Local score work
This commit is contained in:
parent
7e8eb49d95
commit
2e89ba20b5
|
@ -123,12 +123,12 @@ PValue <- function(Emp,ppH1, T, tau){
|
|||
### 2.2. Simulation under $\mathcal{H}_0$ and computation of p-values
|
||||
On simule des séquences sous $\mathcal{H}_0$, que l'on stocke. On calcule la valeur de la scan stat et de la p-value, que l'on stocke aussi. On a une séquence de p-valeur des scans et une séquence de score local.
|
||||
```{r}
|
||||
NbSeqH0=5000
|
||||
NbSeqH0=1000
|
||||
NbSeqH1=NbSeqH0
|
||||
DataH0=vector("list")
|
||||
DataH1=vector("list")
|
||||
lambda0=3
|
||||
lambda1=4
|
||||
lambda1=5
|
||||
T=10
|
||||
tau=1
|
||||
|
||||
|
@ -164,7 +164,7 @@ We compute the p-value associated to all 5 sequences, and stock them in a vector
|
|||
```{r}
|
||||
#We start by computing the empirical distribution for lambda0
|
||||
Emp=EmpDistrib(lambda0,n_sample,T,tau)
|
||||
scan=c()
|
||||
|
||||
pvalue=c()
|
||||
index_scan=c()
|
||||
|
||||
|
@ -220,15 +220,23 @@ ppH0 = PoissonProcess(lambda0,10^4)
|
|||
n1 = length(ppH0)
|
||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
||||
print(ks.test(tbe0,'exp'))
|
||||
x = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
|
||||
xp = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
|
||||
#hist(x)
|
||||
#print(summary(x))
|
||||
|
||||
P_X = table(factor(x, levels = min(x):max(x)))
|
||||
P_X = P_X/sum(table(x))
|
||||
min_X = min(xp)
|
||||
max_X = max(xp)
|
||||
|
||||
vect.score = min_X:max_X
|
||||
|
||||
P_X = table(factor(xp, levels = min(xp):max(xp)))
|
||||
P_X = P_X/sum(table(xp))
|
||||
|
||||
Mean_xp = sum(vect.score*P_X)
|
||||
print(Mean_xp)
|
||||
|
||||
#print(dist.theo.scores) # Mettre à jour avec Elisa
|
||||
print(P_X)
|
||||
#print(P_X)
|
||||
```
|
||||
|
||||
### Calcul du local score
|
||||
|
@ -237,17 +245,14 @@ library("localScore")
|
|||
library(Rcpp)
|
||||
E = 10
|
||||
pvalue=c()
|
||||
X=c()
|
||||
|
||||
for (i in 1:NbSeqH0){
|
||||
X = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
||||
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
||||
X=c(X,x)
|
||||
LS=localScoreC(x)$localScore[1]
|
||||
|
||||
max_X = max(X)
|
||||
min_X = min(X)
|
||||
P_X = table(factor(X, levels = min_X:max_X))/length(X) # supprimer pour les séquences de MC
|
||||
|
||||
LS=localScoreC(X)$localScore[1]
|
||||
|
||||
result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(X), sequence_min = min_X, sequence_max =max_X)
|
||||
result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(x), sequence_min = min_X, sequence_max = max_X)
|
||||
|
||||
pvalue = c(pvalue,result)
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue