Update of Local score
This commit is contained in:
		
							parent
							
								
									bf50e2294c
								
							
						
					
					
						commit
						7e8eb49d95
					
				@ -22,9 +22,12 @@ SimulationH1 <- function(lambda0, lambda1,T,tau){
 | 
			
		||||
    ppH0_avant=ppH0bis[which(ppH0bis<ppH1.repo[1])]
 | 
			
		||||
    ppH0_apres=ppH0bis[which(ppH0bis>ppH1.repo[length(ppH1.repo)])]
 | 
			
		||||
    ppH1=c(ppH0_avant,ppH1.repo,ppH0_apres)
 | 
			
		||||
    return (ppH1)
 | 
			
		||||
    return (c(ppH1,which(ppH1==min(ppH1.repo))))
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
```{r}
 | 
			
		||||
TimeBetweenEvent <- function(pp){
 | 
			
		||||
    n=length(pp)
 | 
			
		||||
    tbe=pp[2:n]-pp[1:n1-1]
 | 
			
		||||
@ -93,30 +96,39 @@ tau=1
 | 
			
		||||
ppH0=PoissonProcess(lambda0,T)
 | 
			
		||||
CDF=Plot_CDF(lambda0,n_sample,T,tau)
 | 
			
		||||
```
 | 
			
		||||
```{r}
 | 
			
		||||
n_sample=10**4
 | 
			
		||||
lambda1=4
 | 
			
		||||
T=10
 | 
			
		||||
tau=1
 | 
			
		||||
ppH0=PoissonProcess(lambda1,T)
 | 
			
		||||
CDF=Plot_CDF(lambda1,n_sample,T,tau)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```{r}
 | 
			
		||||
PValue <- function(Emp,ppH1, T, tau){
 | 
			
		||||
    scanH1=ScanStat(ppH1,T,tau)[2]
 | 
			
		||||
    index_scanH1=ScanStat(ppH1,T,tau)[1]
 | 
			
		||||
    index=Emp$index_scan
 | 
			
		||||
    n=length(index)
 | 
			
		||||
    if (scanH1< min(Emp$index_scan)){
 | 
			
		||||
        return (c(scanH1,1))
 | 
			
		||||
        return (c(scanH1,1,index_scanH1))
 | 
			
		||||
        } else{
 | 
			
		||||
            if(min(Emp$index_scan)<scanH1 && scanH1<=max(Emp$index_scan)){
 | 
			
		||||
                return(c(scanH1,1-Emp$cdf[scanH1-min(Emp$index_scan)+1]))
 | 
			
		||||
            } else{return (c(scanH1,0))}}
 | 
			
		||||
                return(c(scanH1,1-Emp$cdf[scanH1-min(Emp$index_scan)+1],index_scanH1))
 | 
			
		||||
            } else{return (c(scanH1,0,index_scanH1))}}
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2.2. Simulation under $\mathcal{H}_0$ and computation of p-values
 | 
			
		||||
On simule des séquences sous $\mathcal{H}_0$, que l'on stocke. On calcule la valeur de la scan stat et de la p-value, que l'on stocke aussi. On a une séquence de p-valeur des scans et une séquence de score local.
 | 
			
		||||
```{r}
 | 
			
		||||
NbSeqH0=5
 | 
			
		||||
NbSeqH1=5
 | 
			
		||||
NbSeqH0=5000
 | 
			
		||||
NbSeqH1=NbSeqH0
 | 
			
		||||
DataH0=vector("list")
 | 
			
		||||
DataH1=vector("list")
 | 
			
		||||
lambda0=3
 | 
			
		||||
lambda1=5
 | 
			
		||||
lambda1=4
 | 
			
		||||
T=10
 | 
			
		||||
tau=1
 | 
			
		||||
 | 
			
		||||
@ -127,9 +139,11 @@ for (i in 1:NbSeqH0) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#Creation of a sequence that contains the sequence simulated under the alternative hypothesis
 | 
			
		||||
seqH1begin=c()
 | 
			
		||||
for (i in 1:NbSeqH1) {
 | 
			
		||||
    pphi=SimulationH1(lambda0, lambda1,T,tau)
 | 
			
		||||
    DataH1[[i]]=pphi
 | 
			
		||||
    DataH1[[i]]=pphi[1]
 | 
			
		||||
    seqH1begin=c(pphi[2],seqH1begin)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#Computation of the time between events
 | 
			
		||||
@ -152,6 +166,7 @@ We compute the p-value associated to all 5 sequences, and stock them in a vector
 | 
			
		||||
Emp=EmpDistrib(lambda0,n_sample,T,tau)
 | 
			
		||||
scan=c()
 | 
			
		||||
pvalue=c()
 | 
			
		||||
index_scan=c()
 | 
			
		||||
 | 
			
		||||
#Then, we stock the p-value and the 
 | 
			
		||||
for (i in 1:NbSeqH0){
 | 
			
		||||
@ -159,12 +174,64 @@ for (i in 1:NbSeqH0){
 | 
			
		||||
    result=PValue(Emp,DataH0[[i]],T,tau)
 | 
			
		||||
    scan=c(scan,result[1])
 | 
			
		||||
    pvalue=c(pvalue,result[2])
 | 
			
		||||
    cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
 | 
			
		||||
    index_scan=c(index_scan,result[3])
 | 
			
		||||
    #cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
 | 
			
		||||
    #print(length(ppi))
 | 
			
		||||
}
 | 
			
		||||
ScS_H0=data.frame(num=1:NbSeqH0, index=scan, pvalue_scan=pvalue, class=(pvalue<0.05))
 | 
			
		||||
ScS_H0
 | 
			
		||||
ScS_H0=data.frame(num=1:NbSeqH0, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan)
 | 
			
		||||
sum(ScS_H0$class[which(ScS_H0$class==TRUE)])/NbSeqH0
 | 
			
		||||
```
 | 
			
		||||
## 3.Local score
 | 
			
		||||
 | 
			
		||||
```{r}
 | 
			
		||||
#We start by computing the empirical distribution for lambda0
 | 
			
		||||
scan=c()
 | 
			
		||||
pvalue=c()
 | 
			
		||||
index_scan=c()
 | 
			
		||||
 | 
			
		||||
#Then, we stock the p-value and the 
 | 
			
		||||
for (i in 1:NbSeqH1){
 | 
			
		||||
    ppi=DataH1[[i]]
 | 
			
		||||
    result=PValue(Emp,DataH1[[i]],T,tau)
 | 
			
		||||
    scan=c(scan,result[1])
 | 
			
		||||
    pvalue=c(pvalue,result[2])
 | 
			
		||||
    index_scan=c(index_scan,result[3])
 | 
			
		||||
    #cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
 | 
			
		||||
    #print(length(ppi))
 | 
			
		||||
}
 | 
			
		||||
ScS_H1=data.frame(num=1:NbSeqH1, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan, begin_seq_H1=seqH1begin)
 | 
			
		||||
sum(ScS_H1$class[which(ScS_H0$class==TRUE)])/NbSeqH1
 | 
			
		||||
ScS_H1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## 3. Local score
 | 
			
		||||
### Distribution des scores via Monte-Carlo
 | 
			
		||||
```{r}
 | 
			
		||||
# Calcul du choix de E
 | 
			
		||||
E = 1
 | 
			
		||||
maxXk = floor(E*(log(lambda1/lambda0)))
 | 
			
		||||
maxXk
 | 
			
		||||
while (maxXk < 3) {
 | 
			
		||||
    E = E+1
 | 
			
		||||
    maxXk = floor(E*(log(lambda1/lambda0)))
 | 
			
		||||
}
 | 
			
		||||
print(E)
 | 
			
		||||
 | 
			
		||||
ppH0 = PoissonProcess(lambda0,10^4)
 | 
			
		||||
n1 = length(ppH0)
 | 
			
		||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
 | 
			
		||||
print(ks.test(tbe0,'exp'))
 | 
			
		||||
x = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
 | 
			
		||||
#hist(x)
 | 
			
		||||
#print(summary(x))
 | 
			
		||||
 | 
			
		||||
P_X = table(factor(x, levels = min(x):max(x)))
 | 
			
		||||
P_X = P_X/sum(table(x))
 | 
			
		||||
 | 
			
		||||
#print(dist.theo.scores) # Mettre à jour avec Elisa
 | 
			
		||||
print(P_X)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Calcul du local score
 | 
			
		||||
```{r}
 | 
			
		||||
library("localScore")
 | 
			
		||||
library(Rcpp)
 | 
			
		||||
@ -176,7 +243,7 @@ for (i in 1:NbSeqH0){
 | 
			
		||||
    
 | 
			
		||||
    max_X = max(X)
 | 
			
		||||
    min_X = min(X)
 | 
			
		||||
    P_X = table(factor(X, levels = min_X:max_X))/length(X)
 | 
			
		||||
    P_X = table(factor(X, levels = min_X:max_X))/length(X) # supprimer pour les séquences de MC
 | 
			
		||||
    
 | 
			
		||||
    LS=localScoreC(X)$localScore[1]
 | 
			
		||||
    
 | 
			
		||||
@ -188,41 +255,3 @@ LS_H0=data.frame(num=1:NbSeqH0, pvalue_scan=pvalue, class=(pvalue<0.05))
 | 
			
		||||
LS_H0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## A reformater
 | 
			
		||||
```{r}
 | 
			
		||||
# distribtion des scores via MC
 | 
			
		||||
# Nb seq. pp -> Nb seq. tbe -> dist. tbe (vérif) + Nb seq. Scores -> distr scores
 | 
			
		||||
 | 
			
		||||
A = 1/(lambda0-lambda1)
 | 
			
		||||
B = A*log(lambda1/lambda0)
 | 
			
		||||
 | 
			
		||||
ppH1 = PoissonProcess(lambda1,T)
 | 
			
		||||
n1 = length(ppH1)
 | 
			
		||||
tbe1 = ppH1[2:n1]-ppH1[1:n1-1]
 | 
			
		||||
print(tbe1)
 | 
			
		||||
print(ks.test(tbe1,'exp'))
 | 
			
		||||
x = log(lambda1/lambda0)+(lambda0-lambda1)*tbe1 # ne pas mettre le floor ni le E (certes égale à 1)
 | 
			
		||||
hist(x)
 | 
			
		||||
print(summary(x))
 | 
			
		||||
 | 
			
		||||
# Calcul du maximum des scores
 | 
			
		||||
E = 1
 | 
			
		||||
# THEO à faire !!! max.s = log(lambda1/lambda0)
 | 
			
		||||
maxXk = floor(E*(log(lambda1/lambda0)))
 | 
			
		||||
maxXk
 | 
			
		||||
while (maxXk < 3) {
 | 
			
		||||
    E = E+1
 | 
			
		||||
    maxXk = floor(E*(log(lambda1/lambda0)))
 | 
			
		||||
}
 | 
			
		||||
print(E)
 | 
			
		||||
 | 
			
		||||
x = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe1))
 | 
			
		||||
dist.emp.scores = table(x)/sum(table(x))
 | 
			
		||||
dist.emp.scores
 | 
			
		||||
hist(x)
 | 
			
		||||
print(range(x))
 | 
			
		||||
x.verif = seq(range(x)[1],range(x)[2],1)
 | 
			
		||||
dist.theo.scores = lambda0*exp(-lambda0*(A*x.verif-B))
 | 
			
		||||
print(dist.theo.scores)
 | 
			
		||||
print(dist.emp.scores)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user