wasserstein-gan/models/dcgan.py

200 lines
8.1 KiB
Python

import torch
import torch.nn as nn
import torch.nn.parallel
class DCGAN_D(nn.Module):
def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0):
super(DCGAN_D, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
main = nn.Sequential()
# input is nc x isize x isize
main.add_module('initial:{0}-{1}:conv'.format(nc, ndf),
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False))
main.add_module('initial:{0}:relu'.format(ndf),
nn.LeakyReLU(0.2, inplace=True))
csize, cndf = isize / 2, ndf
# Extra layers
for t in range(n_extra_layers):
main.add_module('extra-layers-{0}:{1}:conv'.format(t, cndf),
nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False))
main.add_module('extra-layers-{0}:{1}:batchnorm'.format(t, cndf),
nn.BatchNorm2d(cndf))
main.add_module('extra-layers-{0}:{1}:relu'.format(t, cndf),
nn.LeakyReLU(0.2, inplace=True))
while csize > 4:
in_feat = cndf
out_feat = cndf * 2
main.add_module('pyramid:{0}-{1}:conv'.format(in_feat, out_feat),
nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False))
main.add_module('pyramid:{0}:batchnorm'.format(out_feat),
nn.BatchNorm2d(out_feat))
main.add_module('pyramid:{0}:relu'.format(out_feat),
nn.LeakyReLU(0.2, inplace=True))
cndf = cndf * 2
csize = csize / 2
# state size. K x 4 x 4
main.add_module('final:{0}-{1}:conv'.format(cndf, 1),
nn.Conv2d(cndf, 1, 4, 1, 0, bias=False))
self.main = main
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
output = output.mean(0)
return output.view(1)
class DCGAN_G(nn.Module):
def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
super(DCGAN_G, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
cngf, tisize = ngf//2, 4
while tisize != isize:
cngf = cngf * 2
tisize = tisize * 2
main = nn.Sequential()
# input is Z, going into a convolution
main.add_module('initial:{0}-{1}:convt'.format(nz, cngf),
nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False))
main.add_module('initial:{0}:batchnorm'.format(cngf),
nn.BatchNorm2d(cngf))
main.add_module('initial:{0}:relu'.format(cngf),
nn.ReLU(True))
csize, cndf = 4, cngf
while csize < isize//2:
main.add_module('pyramid:{0}-{1}:convt'.format(cngf, cngf//2),
nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False))
main.add_module('pyramid:{0}:batchnorm'.format(cngf//2),
nn.BatchNorm2d(cngf//2))
main.add_module('pyramid:{0}:relu'.format(cngf//2),
nn.ReLU(True))
cngf = cngf // 2
csize = csize * 2
# Extra layers
for t in range(n_extra_layers):
main.add_module('extra-layers-{0}:{1}:conv'.format(t, cngf),
nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False))
main.add_module('extra-layers-{0}:{1}:batchnorm'.format(t, cngf),
nn.BatchNorm2d(cngf))
main.add_module('extra-layers-{0}:{1}:relu'.format(t, cngf),
nn.ReLU(True))
main.add_module('final:{0}-{1}:convt'.format(cngf, nc),
nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False))
main.add_module('final:{0}:tanh'.format(nc),
nn.Tanh())
self.main = main
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
return output
###############################################################################
class DCGAN_D_nobn(nn.Module):
def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0):
super(DCGAN_D_nobn, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
main = nn.Sequential()
# input is nc x isize x isize
# input is nc x isize x isize
main.add_module('initial:{0}-{1}:conv'.format(nc, ndf),
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False))
main.add_module('initial:{0}:conv'.format(ndf),
nn.LeakyReLU(0.2, inplace=True))
csize, cndf = isize / 2, ndf
# Extra layers
for t in range(n_extra_layers):
main.add_module('extra-layers-{0}:{1}:conv'.format(t, cndf),
nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False))
main.add_module('extra-layers-{0}:{1}:relu'.format(t, cndf),
nn.LeakyReLU(0.2, inplace=True))
while csize > 4:
in_feat = cndf
out_feat = cndf * 2
main.add_module('pyramid:{0}-{1}:conv'.format(in_feat, out_feat),
nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False))
main.add_module('pyramid:{0}:relu'.format(out_feat),
nn.LeakyReLU(0.2, inplace=True))
cndf = cndf * 2
csize = csize / 2
# state size. K x 4 x 4
main.add_module('final:{0}-{1}:conv'.format(cndf, 1),
nn.Conv2d(cndf, 1, 4, 1, 0, bias=False))
self.main = main
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
output = output.mean(0)
return output.view(1)
class DCGAN_G_nobn(nn.Module):
def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
super(DCGAN_G_nobn, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
cngf, tisize = ngf//2, 4
while tisize != isize:
cngf = cngf * 2
tisize = tisize * 2
main = nn.Sequential()
main.add_module('initial:{0}-{1}:convt'.format(nz, cngf),
nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False))
main.add_module('initial:{0}:relu'.format(cngf),
nn.ReLU(True))
csize, cndf = 4, cngf
while csize < isize//2:
main.add_module('pyramid:{0}-{1}:convt'.format(cngf, cngf//2),
nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False))
main.add_module('pyramid:{0}:relu'.format(cngf//2),
nn.ReLU(True))
cngf = cngf // 2
csize = csize * 2
# Extra layers
for t in range(n_extra_layers):
main.add_module('extra-layers-{0}:{1}:conv'.format(t, cngf),
nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False))
main.add_module('extra-layers-{0}:{1}:relu'.format(t, cngf),
nn.ReLU(True))
main.add_module('final:{0}-{1}:convt'.format(cngf, nc),
nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False))
main.add_module('final:{0}:tanh'.format(nc),
nn.Tanh())
self.main = main
def forward(self, input):
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
return output