This project consisted in studying GANs in the case of Wasserstein distance, as part of the fifth-year course at INSA Toulouse in Applied Mathematics of High Dimensional and Deep Learning.
Go to file
Paul Corbalan 44e7943f44 Add use section in README.md 2024-01-31 11:46:23 +01:00
.devcontainer feat(devcontainer): Remove ipykernel for Jupyter Notebook 2024-01-23 15:01:47 +01:00
data Upload predicted_humans data 2024-01-30 13:22:50 +01:00
imgs add readme 2017-01-30 20:11:11 +05:30
models Remove dots from module names to execute the code with pytorch 1.0.0. 2018-12-25 22:59:23 +01:00
samples Upload samples/out.log 2024-01-30 13:31:36 +01:00
.gitattributes Upload samples/out.log 2024-01-30 13:31:36 +01:00
.gitignore Upload samples/out.log 2024-01-30 13:31:36 +01:00
LICENSE Add files from initial project repository 2023-12-16 12:40:12 +01:00
README.md Add use section in README.md 2024-01-31 11:46:23 +01:00
generate.py Set parameters as the one from the main experiment 2024-01-31 11:42:10 +01:00
main.py Set parameters as the one from the main experiment 2024-01-31 11:42:10 +01:00
notebook.ipynb Upload notebook.ipynb 2024-01-30 18:06:35 +01:00
requirements.txt Update requirements.txt 2024-01-30 11:57:10 +01:00

README.md

Wasserstein GAN

L'objectif de ce projet était d'étudier les GANs dans le cas de la distance de Wasserstein.

Voici les membres de notre groupe classés par ordres alphabétiques pour leur nom de famille :

  • Paul Corbalan
  • Nicolas Gonel
  • Oihan Joyot
  • Tristan Portugues
  • Florian Zorzynski

Notre projet s'inspire grandement des ressources suivantes qui sont l'article initial de notre projet ainsi que le code correspondant.

Utilisation

Le détail des expériences est détaillé dans le Jupiter Notebook. Cependant il est possible de reproduire celle-ci simplement en exécutant les commandes suivantes :

  • Pour l'entraînement :
    python main.py
    
  • Pour la génération d'images :
    python generate.py