This project consisted in studying GANs in the case of Wasserstein distance, as part of the fifth-year course at INSA Toulouse in Applied Mathematics of High Dimensional and Deep Learning.
Go to file
Paul Corbalan 12f09b3e73 feat(devcontainer): Add ipykernel for Jupyter 2024-01-09 23:03:36 +01:00
.devcontainer feat(devcontainer): Add ipykernel for Jupyter 2024-01-09 23:03:36 +01:00
imgs add readme 2017-01-30 20:11:11 +05:30
models Remove dots from module names to execute the code with pytorch 1.0.0. 2018-12-25 22:59:23 +01:00
.gitignore Add gitignore 2023-12-16 12:36:36 +01:00
LICENSE Add files from initial project repository 2023-12-16 12:40:12 +01:00
README.md Add files from initial project repository 2023-12-16 12:40:12 +01:00
generate.py Save each image in its own file. 2018-12-26 16:03:28 +01:00
main.py feat(upgrade): Solve issues from previous PyTorch version 2023-12-16 12:35:13 +01:00
requirements.txt feat(upgrade): Solve issues from previous PyTorch version 2023-12-16 12:35:13 +01:00

README.md

Wasserstein GAN

This project is based on the following resources:

Use

python main.py --dataset folder --dataroot data/maps