import torch import torch.nn as nn import torch.nn.parallel class DCGAN_D(nn.Module): def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0): super(DCGAN_D, self).__init__() self.ngpu = ngpu assert isize % 16 == 0, "isize has to be a multiple of 16" main = nn.Sequential() # input is nc x isize x isize main.add_module('initial.conv.{0}-{1}'.format(nc, ndf), nn.Conv2d(nc, ndf, 4, 2, 1, bias=False)) main.add_module('initial.relu.{0}'.format(ndf), nn.LeakyReLU(0.2, inplace=True)) csize, cndf = isize / 2, ndf # Extra layers for t in range(n_extra_layers): main.add_module('extra-layers-{0}.{1}.conv'.format(t, cndf), nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False)) main.add_module('extra-layers-{0}.{1}.batchnorm'.format(t, cndf), nn.BatchNorm2d(cndf)) main.add_module('extra-layers-{0}.{1}.relu'.format(t, cndf), nn.LeakyReLU(0.2, inplace=True)) while csize > 4: in_feat = cndf out_feat = cndf * 2 main.add_module('pyramid.{0}-{1}.conv'.format(in_feat, out_feat), nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False)) main.add_module('pyramid.{0}.batchnorm'.format(out_feat), nn.BatchNorm2d(out_feat)) main.add_module('pyramid.{0}.relu'.format(out_feat), nn.LeakyReLU(0.2, inplace=True)) cndf = cndf * 2 csize = csize / 2 # state size. K x 4 x 4 main.add_module('final.{0}-{1}.conv'.format(cndf, 1), nn.Conv2d(cndf, 1, 4, 1, 0, bias=False)) self.main = main def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) output = output.mean(0) return output.view(1) class DCGAN_G(nn.Module): def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0): super(DCGAN_G, self).__init__() self.ngpu = ngpu assert isize % 16 == 0, "isize has to be a multiple of 16" cngf, tisize = ngf//2, 4 while tisize != isize: cngf = cngf * 2 tisize = tisize * 2 main = nn.Sequential() # input is Z, going into a convolution main.add_module('initial.{0}-{1}.convt'.format(nz, cngf), nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False)) main.add_module('initial.{0}.batchnorm'.format(cngf), nn.BatchNorm2d(cngf)) main.add_module('initial.{0}.relu'.format(cngf), nn.ReLU(True)) csize, cndf = 4, cngf while csize < isize//2: main.add_module('pyramid.{0}-{1}.convt'.format(cngf, cngf//2), nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False)) main.add_module('pyramid.{0}.batchnorm'.format(cngf//2), nn.BatchNorm2d(cngf//2)) main.add_module('pyramid.{0}.relu'.format(cngf//2), nn.ReLU(True)) cngf = cngf // 2 csize = csize * 2 # Extra layers for t in range(n_extra_layers): main.add_module('extra-layers-{0}.{1}.conv'.format(t, cngf), nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False)) main.add_module('extra-layers-{0}.{1}.batchnorm'.format(t, cngf), nn.BatchNorm2d(cngf)) main.add_module('extra-layers-{0}.{1}.relu'.format(t, cngf), nn.ReLU(True)) main.add_module('final.{0}-{1}.convt'.format(cngf, nc), nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False)) main.add_module('final.{0}.tanh'.format(nc), nn.Tanh()) self.main = main def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output ############################################################################### class DCGAN_D_nobn(nn.Module): def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0): super(DCGAN_D_nobn, self).__init__() self.ngpu = ngpu assert isize % 16 == 0, "isize has to be a multiple of 16" main = nn.Sequential() # input is nc x isize x isize # input is nc x isize x isize main.add_module('initial.conv.{0}-{1}'.format(nc, ndf), nn.Conv2d(nc, ndf, 4, 2, 1, bias=False)) main.add_module('initial.relu.{0}'.format(ndf), nn.LeakyReLU(0.2, inplace=True)) csize, cndf = isize / 2, ndf # Extra layers for t in range(n_extra_layers): main.add_module('extra-layers-{0}.{1}.conv'.format(t, cndf), nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False)) main.add_module('extra-layers-{0}.{1}.relu'.format(t, cndf), nn.LeakyReLU(0.2, inplace=True)) while csize > 4: in_feat = cndf out_feat = cndf * 2 main.add_module('pyramid.{0}-{1}.conv'.format(in_feat, out_feat), nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False)) main.add_module('pyramid.{0}.relu'.format(out_feat), nn.LeakyReLU(0.2, inplace=True)) cndf = cndf * 2 csize = csize / 2 # state size. K x 4 x 4 main.add_module('final.{0}-{1}.conv'.format(cndf, 1), nn.Conv2d(cndf, 1, 4, 1, 0, bias=False)) self.main = main def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) output = output.mean(0) return output.view(1) class DCGAN_G_nobn(nn.Module): def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0): super(DCGAN_G_nobn, self).__init__() self.ngpu = ngpu assert isize % 16 == 0, "isize has to be a multiple of 16" cngf, tisize = ngf//2, 4 while tisize != isize: cngf = cngf * 2 tisize = tisize * 2 main = nn.Sequential() main.add_module('initial.{0}-{1}.convt'.format(nz, cngf), nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False)) main.add_module('initial.{0}.relu'.format(cngf), nn.ReLU(True)) csize, cndf = 4, cngf while csize < isize//2: main.add_module('pyramid.{0}-{1}.convt'.format(cngf, cngf//2), nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False)) main.add_module('pyramid.{0}.relu'.format(cngf//2), nn.ReLU(True)) cngf = cngf // 2 csize = csize * 2 # Extra layers for t in range(n_extra_layers): main.add_module('extra-layers-{0}.{1}.conv'.format(t, cngf), nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False)) main.add_module('extra-layers-{0}.{1}.relu'.format(t, cngf), nn.ReLU(True)) main.add_module('final.{0}-{1}.convt'.format(cngf, nc), nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False)) main.add_module('final.{0}.tanh'.format(nc), nn.Tanh()) self.main = main def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output