from __future__ import print_function import argparse import random import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable import os import models.dcgan as dcgan import models.mlp as mlp parser = argparse.ArgumentParser() parser.add_argument('--dataset', required=True, help='cifar10 | lsun | imagenet | folder | lfw ') parser.add_argument('--dataroot', required=True, help='path to dataset') parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) parser.add_argument('--batchSize', type=int, default=64, help='input batch size') parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network') parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for') parser.add_argument('--lrD', type=float, default=0.00005, help='learning rate for Critic, default=0.0002') parser.add_argument('--lrG', type=float, default=0.00005, help='learning rate for Generator, default=0.0002') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--cuda' , action='store_true', help='enables cuda') parser.add_argument('--ngpu' , type=int, default=1, help='number of GPUs to use') parser.add_argument('--netG', default='', help="path to netG (to continue training)") parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--clamp_lower', type=float, default=-0.01) parser.add_argument('--clamp_upper', type=float, default=0.01) parser.add_argument('--Diters', type=int, default=5, help='number of D iters per each G iter') parser.add_argument('--noBN', action='store_true', help='use batchnorm or not (only for DCGAN)') parser.add_argument('--mlp_G', action='store_true', help='use MLP for G') parser.add_argument('--mlp_D', action='store_true', help='use MLP for D') parser.add_argument('--grad_bound', type=float, default=1e10, help='Keep training the disc until the norm of its gradient is below this') parser.add_argument('--n_extra_layers', type=int, default=0, help='Number of extra layers on gen and disc') parser.add_argument('--experiment', default=None, help='Where to store samples and models') parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)') opt = parser.parse_args() print(opt) if opt.experiment is None: opt.experiment = 'samples' os.system('mkdir {0}'.format(opt.experiment)) opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") if opt.dataset in ['imagenet', 'folder', 'lfw']: # folder dataset dataset = dset.ImageFolder(root=opt.dataroot, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt.dataset == 'lsun': dataset = dset.LSUN(db_path=opt.dataroot, classes=['bedroom_train'], transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt.dataset == 'cifar10': dataset = dset.CIFAR10(root=opt.dataroot, download=True, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ) assert dataset dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) nc = 3 n_extra_layers = int(opt.n_extra_layers) # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) if opt.noBN: netG = dcgan.DCGAN_G_nobn(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers) elif opt.mlp_G: netG = mlp.MLP_G(opt.imageSize, nz, nc, ngf, ngpu) else: netG = dcgan.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers) netG.apply(weights_init) if opt.netG != '': # load checkpoint if needed netG.load_state_dict(torch.load(opt.netG)) print(netG) if opt.noBN: netD = dcgan.DCGAN_D_nobn(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers) netD.apply(weights_init) elif opt.mlp_D: netD = mlp.MLP_D(opt.imageSize, nz, nc, ndf, ngpu) else: netD = dcgan.DCGAN_D(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netD) input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) noise = torch.FloatTensor(opt.batchSize, nz, 1, 1) fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1) one = torch.FloatTensor([1]) mone = one * -1 if opt.cuda: netD.cuda() netG.cuda() input = input.cuda() one, mone = one.cuda(), mone.cuda() noise, fixed_noise = noise.cuda(), fixed_noise.cuda() input = Variable(input) noise = Variable(noise) fixed_noise = Variable(fixed_noise) # setup optimizer if opt.adam: optimizerD = optim.Adam(netD.parameters(), lr=opt.lrD, betas=(opt.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt.lrG, betas=(opt.beta1, 0.999)) else: optimizerD = optim.RMSprop(netD.parameters(), lr = opt.lrD) optimizerG = optim.RMSprop(netG.parameters(), lr = opt.lrG) gen_iterations = 0 for epoch in range(opt.niter): data_iter = iter(dataloader) i = 0 while i < len(dataloader): ############################ # (1) Update D network ########################### for p in netD.parameters(): # reset requires_grad p.requires_grad = True # they are set to False below in netG update # train the discriminator Diters times if gen_iterations < 25 or gen_iterations % 500 == 0: Diters = 100 else: Diters = opt.Diters grad_D_norm = 0 j = 0 while (j < Diters or grad_D_norm > opt.grad_bound) and i < len(dataloader): j += 1 # clamp parameters to a cube for p in netD.parameters(): p.data.clamp_(opt.clamp_lower, opt.clamp_upper) data = data_iter.next() i += 1 # train with real real_cpu, _ = data netD.zero_grad() batch_size = real_cpu.size(0) input.data.resize_(real_cpu.size()).copy_(real_cpu) errD_real = netD(input) errD_real.backward(one) # train with fake noise.data.resize_(batch_size, nz, 1, 1) noise.data.normal_(0, 1) fake = netG(noise) input.data.copy_(fake.data) errD_fake = netD(input) errD_fake.backward(mone) errD = errD_real - errD_fake optimizerD.step() ############################ # (2) Update G network ########################### for p in netD.parameters(): p.requires_grad = False # to avoid computation netG.zero_grad() noise.data.normal_(0, 1) fake = netG(noise) errG = netD(fake) errG.backward(one) optimizerG.step() gen_iterations += 1 print('[%d/%d][%d/%d] Loss_D: %f Loss_G: %f Loss_D_real: %f Loss_D_fake %f' % (epoch, opt.niter, gen_iterations, len(dataloader), errD.data[0], errG.data[0], errD_real.data[0], errD_fake.data[0])) if gen_iterations % 500 == 0: vutils.save_image(real_cpu, '{0}/real_samples.png'.format(opt.experiment)) fake = netG(fixed_noise) vutils.save_image(fake.data, '{0}/fake_samples_{1}.png'.format(opt.experiment, gen_iterations)) # do checkpointing torch.save(netG.state_dict(), '{0}/netG_epoch_{1}.pth'.format(opt.experiment, epoch)) torch.save(netD.state_dict(), '{0}/netD_epoch_{1}.pth'.format(opt.experiment, epoch))