push code
This commit is contained in:
commit
cde8a4d1c0
|
@ -0,0 +1,228 @@
|
||||||
|
from __future__ import print_function
|
||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.parallel
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.utils.data
|
||||||
|
import torchvision.datasets as dset
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
import torchvision.utils as vutils
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import os
|
||||||
|
|
||||||
|
import models.dcgan as dcgan
|
||||||
|
import models.mlp as mlp
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--dataset', required=True, help='cifar10 | lsun | imagenet | folder | lfw ')
|
||||||
|
parser.add_argument('--dataroot', required=True, help='path to dataset')
|
||||||
|
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
|
||||||
|
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
|
||||||
|
parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network')
|
||||||
|
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')
|
||||||
|
parser.add_argument('--ngf', type=int, default=64)
|
||||||
|
parser.add_argument('--ndf', type=int, default=64)
|
||||||
|
parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
|
||||||
|
parser.add_argument('--lrD', type=float, default=0.00005, help='learning rate for Critic, default=0.0002')
|
||||||
|
parser.add_argument('--lrG', type=float, default=0.00005, help='learning rate for Generator, default=0.0002')
|
||||||
|
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
|
||||||
|
parser.add_argument('--cuda' , action='store_true', help='enables cuda')
|
||||||
|
parser.add_argument('--ngpu' , type=int, default=1, help='number of GPUs to use')
|
||||||
|
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
|
||||||
|
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
|
||||||
|
parser.add_argument('--clamp_lower', type=float, default=-0.01)
|
||||||
|
parser.add_argument('--clamp_upper', type=float, default=0.01)
|
||||||
|
parser.add_argument('--Diters', type=int, default=5, help='number of D iters per each G iter')
|
||||||
|
parser.add_argument('--noBN', action='store_true', help='use batchnorm or not (only for DCGAN)')
|
||||||
|
parser.add_argument('--mlp_G', action='store_true', help='use MLP for G')
|
||||||
|
parser.add_argument('--mlp_D', action='store_true', help='use MLP for D')
|
||||||
|
parser.add_argument('--grad_bound', type=float, default=1e10, help='Keep training the disc until the norm of its gradient is below this')
|
||||||
|
parser.add_argument('--n_extra_layers', type=int, default=0, help='Number of extra layers on gen and disc')
|
||||||
|
parser.add_argument('--experiment', default=None, help='Where to store samples and models')
|
||||||
|
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
print(opt)
|
||||||
|
|
||||||
|
if opt.experiment is None:
|
||||||
|
opt.experiment = 'samples'
|
||||||
|
os.system('mkdir {0}'.format(opt.experiment))
|
||||||
|
|
||||||
|
opt.manualSeed = random.randint(1, 10000) # fix seed
|
||||||
|
print("Random Seed: ", opt.manualSeed)
|
||||||
|
random.seed(opt.manualSeed)
|
||||||
|
torch.manual_seed(opt.manualSeed)
|
||||||
|
|
||||||
|
cudnn.benchmark = True
|
||||||
|
|
||||||
|
if torch.cuda.is_available() and not opt.cuda:
|
||||||
|
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
|
||||||
|
|
||||||
|
if opt.dataset in ['imagenet', 'folder', 'lfw']:
|
||||||
|
# folder dataset
|
||||||
|
dataset = dset.ImageFolder(root=opt.dataroot,
|
||||||
|
transform=transforms.Compose([
|
||||||
|
transforms.Scale(opt.imageSize),
|
||||||
|
transforms.CenterCrop(opt.imageSize),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
||||||
|
]))
|
||||||
|
elif opt.dataset == 'lsun':
|
||||||
|
dataset = dset.LSUN(db_path=opt.dataroot, classes=['bedroom_train'],
|
||||||
|
transform=transforms.Compose([
|
||||||
|
transforms.Scale(opt.imageSize),
|
||||||
|
transforms.CenterCrop(opt.imageSize),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
||||||
|
]))
|
||||||
|
elif opt.dataset == 'cifar10':
|
||||||
|
dataset = dset.CIFAR10(root=opt.dataroot, download=True,
|
||||||
|
transform=transforms.Compose([
|
||||||
|
transforms.Scale(opt.imageSize),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
||||||
|
])
|
||||||
|
)
|
||||||
|
assert dataset
|
||||||
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
|
||||||
|
shuffle=True, num_workers=int(opt.workers))
|
||||||
|
|
||||||
|
ngpu = int(opt.ngpu)
|
||||||
|
nz = int(opt.nz)
|
||||||
|
ngf = int(opt.ngf)
|
||||||
|
ndf = int(opt.ndf)
|
||||||
|
nc = 3
|
||||||
|
n_extra_layers = int(opt.n_extra_layers)
|
||||||
|
|
||||||
|
# custom weights initialization called on netG and netD
|
||||||
|
def weights_init(m):
|
||||||
|
classname = m.__class__.__name__
|
||||||
|
if classname.find('Conv') != -1:
|
||||||
|
m.weight.data.normal_(0.0, 0.02)
|
||||||
|
elif classname.find('BatchNorm') != -1:
|
||||||
|
m.weight.data.normal_(1.0, 0.02)
|
||||||
|
m.bias.data.fill_(0)
|
||||||
|
|
||||||
|
if opt.noBN:
|
||||||
|
netG = dcgan.DCGAN_G_nobn(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers)
|
||||||
|
elif opt.mlp_G:
|
||||||
|
netG = mlp.MLP_G(opt.imageSize, nz, nc, ngf, ngpu)
|
||||||
|
else:
|
||||||
|
netG = dcgan.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers)
|
||||||
|
|
||||||
|
netG.apply(weights_init)
|
||||||
|
if opt.netG != '': # load checkpoint if needed
|
||||||
|
netG.load_state_dict(torch.load(opt.netG))
|
||||||
|
print(netG)
|
||||||
|
|
||||||
|
if opt.noBN:
|
||||||
|
netD = dcgan.DCGAN_D_nobn(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers)
|
||||||
|
netD.apply(weights_init)
|
||||||
|
elif opt.mlp_D:
|
||||||
|
netD = mlp.MLP_D(opt.imageSize, nz, nc, ndf, ngpu)
|
||||||
|
else:
|
||||||
|
netD = dcgan.DCGAN_D(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers)
|
||||||
|
netD.apply(weights_init)
|
||||||
|
|
||||||
|
if opt.netD != '':
|
||||||
|
netD.load_state_dict(torch.load(opt.netD))
|
||||||
|
print(netD)
|
||||||
|
|
||||||
|
input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize)
|
||||||
|
noise = torch.FloatTensor(opt.batchSize, nz, 1, 1)
|
||||||
|
fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1)
|
||||||
|
one = torch.FloatTensor([1])
|
||||||
|
mone = one * -1
|
||||||
|
|
||||||
|
if opt.cuda:
|
||||||
|
netD.cuda()
|
||||||
|
netG.cuda()
|
||||||
|
input = input.cuda()
|
||||||
|
one, mone = one.cuda(), mone.cuda()
|
||||||
|
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
|
||||||
|
|
||||||
|
input = Variable(input)
|
||||||
|
noise = Variable(noise)
|
||||||
|
fixed_noise = Variable(fixed_noise)
|
||||||
|
|
||||||
|
# setup optimizer
|
||||||
|
if opt.adam:
|
||||||
|
optimizerD = optim.Adam(netD.parameters(), lr=opt.lrD, betas=(opt.beta1, 0.999))
|
||||||
|
optimizerG = optim.Adam(netG.parameters(), lr=opt.lrG, betas=(opt.beta1, 0.999))
|
||||||
|
else:
|
||||||
|
optimizerD = optim.RMSprop(netD.parameters(), lr = opt.lrD)
|
||||||
|
optimizerG = optim.RMSprop(netG.parameters(), lr = opt.lrG)
|
||||||
|
|
||||||
|
gen_iterations = 0
|
||||||
|
for epoch in range(opt.niter):
|
||||||
|
data_iter = iter(dataloader)
|
||||||
|
i = 0
|
||||||
|
while i < len(dataloader):
|
||||||
|
############################
|
||||||
|
# (1) Update D network
|
||||||
|
###########################
|
||||||
|
for p in netD.parameters(): # reset requires_grad
|
||||||
|
p.requires_grad = True # they are set to False below in netG update
|
||||||
|
|
||||||
|
# train the discriminator Diters times
|
||||||
|
if gen_iterations < 25 or gen_iterations % 500 == 0:
|
||||||
|
Diters = 100
|
||||||
|
else:
|
||||||
|
Diters = opt.Diters
|
||||||
|
grad_D_norm = 0
|
||||||
|
j = 0
|
||||||
|
while (j < Diters or grad_D_norm > opt.grad_bound) and i < len(dataloader):
|
||||||
|
j += 1
|
||||||
|
|
||||||
|
# clamp parameters to a cube
|
||||||
|
for p in netD.parameters():
|
||||||
|
p.data.clamp_(opt.clamp_lower, opt.clamp_upper)
|
||||||
|
|
||||||
|
data = data_iter.next()
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
# train with real
|
||||||
|
real_cpu, _ = data
|
||||||
|
netD.zero_grad()
|
||||||
|
batch_size = real_cpu.size(0)
|
||||||
|
input.data.resize_(real_cpu.size()).copy_(real_cpu)
|
||||||
|
|
||||||
|
errD_real = netD(input)
|
||||||
|
errD_real.backward(one)
|
||||||
|
|
||||||
|
# train with fake
|
||||||
|
noise.data.resize_(batch_size, nz, 1, 1)
|
||||||
|
noise.data.normal_(0, 1)
|
||||||
|
fake = netG(noise)
|
||||||
|
input.data.copy_(fake.data)
|
||||||
|
errD_fake = netD(input)
|
||||||
|
errD_fake.backward(mone)
|
||||||
|
errD = errD_real - errD_fake
|
||||||
|
optimizerD.step()
|
||||||
|
|
||||||
|
############################
|
||||||
|
# (2) Update G network
|
||||||
|
###########################
|
||||||
|
for p in netD.parameters():
|
||||||
|
p.requires_grad = False # to avoid computation
|
||||||
|
netG.zero_grad()
|
||||||
|
noise.data.normal_(0, 1)
|
||||||
|
fake = netG(noise)
|
||||||
|
errG = netD(fake)
|
||||||
|
errG.backward(one)
|
||||||
|
optimizerG.step()
|
||||||
|
gen_iterations += 1
|
||||||
|
|
||||||
|
print('[%d/%d][%d/%d] Loss_D: %f Loss_G: %f Loss_D_real: %f Loss_D_fake %f'
|
||||||
|
% (epoch, opt.niter, gen_iterations, len(dataloader),
|
||||||
|
errD.data[0], errG.data[0], errD_real.data[0], errD_fake.data[0]))
|
||||||
|
if gen_iterations % 500 == 0:
|
||||||
|
vutils.save_image(real_cpu, '{0}/real_samples.png'.format(opt.experiment))
|
||||||
|
fake = netG(fixed_noise)
|
||||||
|
vutils.save_image(fake.data, '{0}/fake_samples_{1}.png'.format(opt.experiment, gen_iterations))
|
||||||
|
|
||||||
|
# do checkpointing
|
||||||
|
torch.save(netG.state_dict(), '{0}/netG_epoch_{1}.pth'.format(opt.experiment, epoch))
|
||||||
|
torch.save(netD.state_dict(), '{0}/netD_epoch_{1}.pth'.format(opt.experiment, epoch))
|
|
@ -0,0 +1,197 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.parallel
|
||||||
|
|
||||||
|
class DCGAN_D(nn.Container):
|
||||||
|
def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0):
|
||||||
|
super(DCGAN_D, self).__init__()
|
||||||
|
self.ngpu = ngpu
|
||||||
|
assert isize % 16 == 0, "isize has to be a multiple of 16"
|
||||||
|
|
||||||
|
main = nn.Sequential(
|
||||||
|
# input is nc x isize x isize
|
||||||
|
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
)
|
||||||
|
i, csize, cndf = 2, isize / 2, ndf
|
||||||
|
|
||||||
|
# Extra layers
|
||||||
|
for t in range(n_extra_layers):
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.BatchNorm2d(cndf))
|
||||||
|
main.add_module(str(i+2),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True))
|
||||||
|
i += 3
|
||||||
|
|
||||||
|
while csize > 4:
|
||||||
|
in_feat = cndf
|
||||||
|
out_feat = cndf * 2
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.BatchNorm2d(out_feat))
|
||||||
|
main.add_module(str(i+2),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True))
|
||||||
|
i+=3
|
||||||
|
cndf = cndf * 2
|
||||||
|
csize = csize / 2
|
||||||
|
|
||||||
|
# state size. K x 4 x 4
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(cndf, 1, 4, 1, 0, bias=False))
|
||||||
|
self.main = main
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
gpu_ids = None
|
||||||
|
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
|
||||||
|
gpu_ids = range(self.ngpu)
|
||||||
|
output = nn.parallel.data_parallel(self.main, input, gpu_ids)
|
||||||
|
output = output.mean(0)
|
||||||
|
return output.view(1)
|
||||||
|
|
||||||
|
class DCGAN_G(nn.Container):
|
||||||
|
def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
|
||||||
|
super(DCGAN_G, self).__init__()
|
||||||
|
self.ngpu = ngpu
|
||||||
|
assert isize % 16 == 0, "isize has to be a multiple of 16"
|
||||||
|
|
||||||
|
cngf, tisize = ngf//2, 4
|
||||||
|
while tisize != isize:
|
||||||
|
cngf = cngf * 2
|
||||||
|
tisize = tisize * 2
|
||||||
|
|
||||||
|
main = nn.Sequential(
|
||||||
|
# input is Z, going into a convolution
|
||||||
|
nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False),
|
||||||
|
nn.BatchNorm2d(cngf),
|
||||||
|
nn.ReLU(True),
|
||||||
|
)
|
||||||
|
|
||||||
|
i, csize, cndf = 3, 4, cngf
|
||||||
|
while csize < isize//2:
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.BatchNorm2d(cngf//2))
|
||||||
|
main.add_module(str(i+2),
|
||||||
|
nn.ReLU(True))
|
||||||
|
i += 3
|
||||||
|
cngf = cngf // 2
|
||||||
|
csize = csize * 2
|
||||||
|
|
||||||
|
# Extra layers
|
||||||
|
for t in range(n_extra_layers):
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.BatchNorm2d(cngf))
|
||||||
|
main.add_module(str(i+2),
|
||||||
|
nn.ReLU(True))
|
||||||
|
i += 3
|
||||||
|
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False))
|
||||||
|
main.add_module(str(i+1), nn.Tanh())
|
||||||
|
self.main = main
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
gpu_ids = None
|
||||||
|
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
|
||||||
|
gpu_ids = range(self.ngpu)
|
||||||
|
return nn.parallel.data_parallel(self.main, input, gpu_ids)
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
class DCGAN_D_nobn(nn.Container):
|
||||||
|
def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0):
|
||||||
|
super(DCGAN_D_nobn, self).__init__()
|
||||||
|
self.ngpu = ngpu
|
||||||
|
assert isize % 16 == 0, "isize has to be a multiple of 16"
|
||||||
|
|
||||||
|
main = nn.Sequential(
|
||||||
|
# input is nc x isize x isize
|
||||||
|
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
)
|
||||||
|
i, csize, cndf = 2, isize / 2, ndf
|
||||||
|
|
||||||
|
# Extra layers
|
||||||
|
for t in range(n_extra_layers):
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True))
|
||||||
|
i += 2
|
||||||
|
|
||||||
|
while csize > 4:
|
||||||
|
in_feat = cndf
|
||||||
|
out_feat = cndf * 2
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True))
|
||||||
|
i+=2
|
||||||
|
cndf = cndf * 2
|
||||||
|
csize = csize / 2
|
||||||
|
|
||||||
|
# state size. K x 4 x 4
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(cndf, 1, 4, 1, 0, bias=False))
|
||||||
|
self.main = main
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
gpu_ids = None
|
||||||
|
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
|
||||||
|
gpu_ids = range(self.ngpu)
|
||||||
|
output = nn.parallel.data_parallel(self.main, input, gpu_ids)
|
||||||
|
output = output.mean(0)
|
||||||
|
return output.view(1)
|
||||||
|
|
||||||
|
class DCGAN_G_nobn(nn.Container):
|
||||||
|
def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
|
||||||
|
super(DCGAN_G_nobn, self).__init__()
|
||||||
|
self.ngpu = ngpu
|
||||||
|
assert isize % 16 == 0, "isize has to be a multiple of 16"
|
||||||
|
|
||||||
|
cngf, tisize = ngf//2, 4
|
||||||
|
while tisize != isize:
|
||||||
|
cngf = cngf * 2
|
||||||
|
tisize = tisize * 2
|
||||||
|
|
||||||
|
main = nn.Sequential(
|
||||||
|
# input is Z, going into a convolution
|
||||||
|
nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False),
|
||||||
|
nn.ReLU(True),
|
||||||
|
)
|
||||||
|
|
||||||
|
i, csize, cndf = 3, 4, cngf
|
||||||
|
while csize < isize//2:
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.ReLU(True))
|
||||||
|
i += 2
|
||||||
|
cngf = cngf // 2
|
||||||
|
csize = csize * 2
|
||||||
|
|
||||||
|
# Extra layers
|
||||||
|
for t in range(n_extra_layers):
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False))
|
||||||
|
main.add_module(str(i+1),
|
||||||
|
nn.ReLU(True))
|
||||||
|
i += 2
|
||||||
|
|
||||||
|
main.add_module(str(i),
|
||||||
|
nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False))
|
||||||
|
main.add_module(str(i+1), nn.Tanh())
|
||||||
|
self.main = main
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
gpu_ids = None
|
||||||
|
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
|
||||||
|
gpu_ids = range(self.ngpu)
|
||||||
|
return nn.parallel.data_parallel(self.main, input, gpu_ids)
|
|
@ -0,0 +1,65 @@
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
from __future__ import unicode_literals
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
class MLP_G(nn.Container):
|
||||||
|
def __init__(self, isize, nz, nc, ngf, ngpu):
|
||||||
|
super(MLP_G, self).__init__()
|
||||||
|
self.ngpu = ngpu
|
||||||
|
|
||||||
|
main = nn.Sequential(
|
||||||
|
# Z goes into a linear of size: ngf
|
||||||
|
nn.Linear(nz, ngf),
|
||||||
|
nn.ReLU(True),
|
||||||
|
nn.Linear(ngf, ngf),
|
||||||
|
nn.ReLU(True),
|
||||||
|
nn.Linear(ngf, ngf),
|
||||||
|
nn.ReLU(True),
|
||||||
|
nn.Linear(ngf, nc * isize * isize),
|
||||||
|
)
|
||||||
|
self.main = main
|
||||||
|
self.nc = nc
|
||||||
|
self.isize = isize
|
||||||
|
self.nz = nz
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
input = input.view(input.size(0), input.size(1))
|
||||||
|
gpu_ids = None
|
||||||
|
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
|
||||||
|
gpu_ids = range(self.ngpu)
|
||||||
|
out = nn.parallel.data_parallel(self.main, input, gpu_ids)
|
||||||
|
return out.view(out.size(0), self.nc, self.isize, self.isize)
|
||||||
|
|
||||||
|
|
||||||
|
class MLP_D(nn.Container):
|
||||||
|
def __init__(self, isize, nz, nc, ndf, ngpu):
|
||||||
|
super(MLP_D, self).__init__()
|
||||||
|
self.ngpu = ngpu
|
||||||
|
|
||||||
|
main = nn.Sequential(
|
||||||
|
# Z goes into a linear of size: ndf
|
||||||
|
nn.Linear(nc * isize * isize, ndf),
|
||||||
|
nn.ReLU(True),
|
||||||
|
nn.Linear(ndf, ndf),
|
||||||
|
nn.ReLU(True),
|
||||||
|
nn.Linear(ndf, ndf),
|
||||||
|
nn.ReLU(True),
|
||||||
|
nn.Linear(ndf, 1),
|
||||||
|
)
|
||||||
|
self.main = main
|
||||||
|
self.nc = nc
|
||||||
|
self.isize = isize
|
||||||
|
self.nz = nz
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
input = input.view(input.size(0),
|
||||||
|
input.size(1) * input.size(2) * input.size(3))
|
||||||
|
gpu_ids = None
|
||||||
|
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
|
||||||
|
gpu_ids = range(self.ngpu)
|
||||||
|
output = nn.parallel.data_parallel(self.main, input, gpu_ids)
|
||||||
|
output = output.mean(0)
|
||||||
|
return output.view(1)
|
|
@ -0,0 +1,2 @@
|
||||||
|
torch
|
||||||
|
torchvision
|
Loading…
Reference in New Issue