add readme
This commit is contained in:
parent
64d35231af
commit
42fad7dcbb
22
README.md
22
README.md
|
@ -9,19 +9,37 @@ Code accompanying the paper ["Wasserstein GAN"](https://arxiv.org/abs/1701.07875
|
||||||
- [PyTorch](http://pytorch.org)
|
- [PyTorch](http://pytorch.org)
|
||||||
- For training, an NVIDIA GPU is strongly recommended for speed. CPU is supported but training is very slow.
|
- For training, an NVIDIA GPU is strongly recommended for speed. CPU is supported but training is very slow.
|
||||||
|
|
||||||
|
Two main empirical claims:
|
||||||
|
|
||||||
|
###Generator sample quality correlates with discriminator loss
|
||||||
|
|
||||||
|
![gensample](imgs/w_combined.png "sample quality correlates with discriminator loss")
|
||||||
|
|
||||||
|
###Improved model stability
|
||||||
|
|
||||||
|
![stability](imgs/compare_dcgan.png "stability")
|
||||||
|
|
||||||
|
|
||||||
##Reproducing LSUN experiments
|
##Reproducing LSUN experiments
|
||||||
|
|
||||||
**With DCGAN:**
|
**With DCGAN:**
|
||||||
|
|
||||||
```python
|
```bash
|
||||||
python main.py --dataset lsun --dataroot [lsun-train-folder] --cuda
|
python main.py --dataset lsun --dataroot [lsun-train-folder] --cuda
|
||||||
```
|
```
|
||||||
|
|
||||||
**With MLP:**
|
**With MLP:**
|
||||||
|
|
||||||
```python
|
```bash
|
||||||
python main.py --mlp_G --ngf 512
|
python main.py --mlp_G --ngf 512
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Generated samples will be in the `samples` folder.
|
||||||
|
|
||||||
|
If you plot the value `-Loss_D`, then you can reproduce the curves from the paper. The curves from the paper (as mentioned in the paper) have a median filter applied to them:
|
||||||
|
|
||||||
|
```python
|
||||||
|
med_filtered_loss = scipy.signal.medfilt(-Loss_D, dtype='float64'), 101)
|
||||||
|
```
|
||||||
|
|
||||||
More improved README in the works.
|
More improved README in the works.
|
||||||
|
|
Binary file not shown.
After Width: | Height: | Size: 1.5 MiB |
Binary file not shown.
After Width: | Height: | Size: 239 KiB |
Loading…
Reference in New Issue