{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Quandl\n", "Plus d'infos:\n", "https://www.quandl.com/tools/python" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import quandl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Les bases de QUANDL\n", "Cette requête obtient le prix du pétrole brut WTI du ministère américain de l'énergie:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "mydata = quandl.get(\"EIA/PET_RWTC_D\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Value\n", "Date \n", "1986-01-02 25.56\n", "1986-01-03 26.00\n", "1986-01-06 26.53\n", "1986-01-07 25.85\n", "1986-01-08 25.87" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Value
Date
1986-01-0225.56
1986-01-0326.00
1986-01-0626.53
1986-01-0725.85
1986-01-0825.87
\n
" }, "metadata": {}, "execution_count": 4 } ], "source": [ "mydata.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 5 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2020-11-27T22:05:55.378475\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.1, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFeCAYAAACYfOm1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABqM0lEQVR4nO3dd3gbVdYG8PfIvcVJHKcXp/fuVAKkhxDq0mGBEHovSwm9Qz76LmUpS10IoQZY0khCSO+9d6cXx47j3u/3x4ykkTSSZVuyZOv9PU8epJmRdD24nLlz7jmilAIREREREWksgR4AEREREVEwYYBMRERERGTAAJmIiIiIyIABMhERERGRAQNkIiIiIiIDBshERERERAbhgR6AUaNGjVRKSkqgh0FEREREddzatWtPKaWSzfYFVYCckpKCNWvWBHoYRERERFTHicgBd/uYYkFEREREZOB1gCwin4nISRHZYtj2nIgcEZEN+r/zDfseF5E9IrJTRMb5euBERERERP5QmRnkLwCcZ7L9baVUH/3fTAAQkW4ArgbQXX/NByISVt3BEhERERH5m9c5yEqpRSKS4uXhFwOYppQqArBfRPYAGAhgeeWHSERERETVUVJSgsOHD6OwsDDQQ6lx0dHRaNmyJSIiIrx+jS8W6d0jIjcAWAPgH0qp0wBaAFhhOOawvs2FiNwG4DYAaN26tQ+GQ0RERERGhw8fRkJCAlJSUiAigR5OjVFKISMjA4cPH0bbtm29fl11F+n9G0B7AH0AHAPwpr7d7MwrszdQSn2slEpVSqUmJ5tW2iAiIiKiaigsLERSUlJIBccAICJISkqq9Mx5tQJkpdQJpVSZUqocwCfQ0igAbca4leHQlgCOVueziIiIiKjqQi04tqrK112tAFlEmhmeXgrAWuHiNwBXi0iUiLQF0BHAqup8FhERERHVTsOHD8ecOXMctr3zzju466673B4fyN4YlSnz9i20RXadReSwiNwM4DUR2SwimwCMAPAgACiltgL4HsA2ALMB3K2UKvP56ImIiIgo6F1zzTWYNm2aw7Zp06bhmmuuCdCIPPM6QFZKXaOUaqaUilBKtVRKfaqUul4p1VMp1UspdZFS6pjh+JeVUu2VUp2VUrP8M3wiIiIiCnaXX345fv/9dxQVFQEA0tLScPToUUydOhWpqano3r07nn32WdPXxsfH2x7/+OOPmDhxIgAgPT0dl112GQYMGIABAwZg6dKlPhtvULWaJiIiCibbjmbjuv+swPe3D0HHJgmBHg6RTzz/v63YdjTbp+/ZrXk9PHthd7f7k5KSMHDgQMyePRsXX3wxpk2bhquuugqPP/44GjZsiLKyMowaNQqbNm1Cr169vPrM+++/Hw8++CCGDRuGgwcPYty4cdi+fbtPvh62miYiInLjqo+X43R+Ca76eEXFBxORR8Y0C2t6xffff49+/fqhb9++2Lp1K7Zt2+b1+82bNw/33HMP+vTpg4suugjZ2dnIycnxyVg5g0xERORGaZlWoTQzrzjAIyHyHU8zvf50ySWX4KGHHsK6detQUFCABg0a4I033sDq1avRoEEDTJw40bQcm7EKhXF/eXk5li9fjpiYGJ+PlTPIREREblhCsyoWkV/Ex8dj+PDhmDRpEq655hpkZ2cjLi4OiYmJOHHiBGbNMl+y1qRJE2zfvh3l5eWYPn26bfvYsWPx3nvv2Z5v2LDBZ2NlgExEROSGJUTrxhL5yzXXXIONGzfi6quvRu/evdG3b190794dkyZNwllnnWX6milTpuCCCy7AyJEj0ayZvcLwv/71L6xZswa9evVCt27d8OGHH/psnKKUaYO7gEhNTVWBrHlHRERk1Ou5OcguLAUApE2ZEODREFXd9u3b0bVr10API2DMvn4RWauUSjU7njPIREREboRq5zGiUMcAmYiIyI3yILrLSkQ1hwEyERGRG0Ul5YEeAhEFAANkIiIiN4rLGCBT3RFM685qUlW+bgbIREREJj5bsj/QQyDymejoaGRkZIRckKyUQkZGBqKjoyv1OjYKISIiMvHC79539CIKdi1btsThw4eRnp4e6KHUuOjoaLRs2bJSr2GATERERFTHRUREoG3btoEeRq3BFAsiIiIiIgMGyEREREREBgyQiYiIKjCsQ6NAD4GIahADZCIiogpER/DPJVEo4U88ERFRBcpDqzIWUchjgExERORky5EzDs/ZcpootDBAJiIicnLZv5c5POcMMlFoYYBMRETkRMTx+foDpwMzECIKCAbIRERETpxnjHOKSgMzECIKCAbIRERETopLywM9BCIKIAbIREREREQGDJCJiIiIiAwYIBMRETnp2Dje9rh1w9gAjoSIAoEBMhERkZOmidG2xxf1bo4wi3g4mojqGq8DZBH5TEROisgWw7bXRWSHiGwSkekiUl/fniIiBSKyQf/3oR/GTkRE5Bcnsgttjy0WQVm5Qi4rWRCFjMrMIH8B4DynbXMB9FBK9QKwC8Djhn17lVJ99H93VG+YRERENWfXiVzb42V7TgEAnvtta6CGQ0Q1zOsAWSm1CECm07Y/lFLWS+oVAFr6cGxEREQ1zjh7DAAlZVrJt1O5RYEYDhEFgC9zkCcBmGV43lZE1ovIQhE524efQ0RE5DfONZCtTUL+2pkeiOEQUQCE++JNRORJAKUAvtE3HQPQWimVISL9AfwiIt2VUtkmr70NwG0A0Lp1a18Mh4iIyGf2pecFeghEVMOqPYMsIjcCuADAdUopBQBKqSKlVIb+eC2AvQA6mb1eKfWxUipVKZWanJxc3eEQERFVizWlgohCV7UCZBE5D8BjAC5SSuUbtieLSJj+uB2AjgD2VeeziIiIakJpuXK770BGHhbtYqoFUV1XmTJv3wJYDqCziBwWkZsBvAcgAcBcp3Ju5wDYJCIbAfwI4A6lVKbpGxMREQUR5xzkczvZ726e+/pfuOGzVTU9JCKqYV7nICulrjHZ/KmbY38C8FNVB0VERBQo1hnkh8d2wkW9W6BFgxi0f2ImEqLCbQv2iKhu88kiPSIiorrCmoPcp1UDtE6yt5lmcEwUOthqmoiIyCBPD4QjwthemihUMUAmIiIymPj5agBAOANkopDFAJmIiMhEuIV/IolCFX/6iYiITHAGmSh0MUAmIiIyYZxBjgzjn0uiUMKfeCIiIl1RaZntsXEGOSqcfy6JQgl/4omIiHRnCkpsj8Mt9gCZJd6IQgsDZCIiIp2xi1440yqIQhZ/+omIiHQOAbKFi/SIQhUDZCIiIl1xmT1AtggDZKJQxQCZiIhIZ5xBrivx8b70XKRMnoGNh7ICPRSiWoMBMhERka7EMINsjI+Hd06u+cH4gFIKb87dBQCYtvpQgEdDVHswQCYiItIV6TPIIzonIyk+yrb9i5sGYlz3JoEaVpVNX38EMzYdAwDERIQFeDREtQcDZCIiIt2p3GIAwH2jOrrsa5wQbXt8Oq+4xsZUHYdPF9geJydEeTiSiIwYIBMREQE4lJmP+75dDwCoFxPhsj/S0Cwkt5bURY4wlKqLCOLW2SeyC5EyeQYW7UoP9FCIADBAJiIiAgCc/doC2+NEkwA5ohbWRTYGxWXlqtKvLyotQ6khL9tfhrw6HwAwZdYOv38WkTdq3087ERGRnzWKd01HiKyF7aaNpepKqxAgd35qNs7752JfDsmUdWiZtSR1heq+2vfTTkRE5EfNE6NNt0cGcYqCO3mGVJCqzCADwJ6TuTiTX1LxgVWglHIY1/HsQr98DlFlMUAmIiIycBdGGmeQy1XVgs2aZi3xBgDVGXLvF/7wwWhcvTNvN9o/MbPKr399zg6kTJ6BMwX+CeApdDFAJiIiMjh2xnwW05iDXMXJ2Bo3umtj2+PqBvVHsgoqPqiS/rviQLVe//6CvQCAlfsyfDEcIhsGyEREFPKUF8GjcQY5rJa02YuLCrc9rm5Mv+7AaWw7ml3Nd3Hkq5zjTxbv88n7EFkxQCYiopBXVFpxpYYW9WNsj2tDfHw6rxiHMvPtG6o5g3zvt+tx/r/8v2DPXdWMwpIyl1SKBP0CYOfxHHzw1x6/j41CBwNkIiIKeRsPZVV4TEK0fTa2NuQg931xLtYdzLI9r2xaSLEXFw3+kFdcZrr94veWovfz9lzoH9YcQo6+CDG7sBSvzd5ZI+Oj0BBe8SFERER1WyMvusyFW+xzSlWtCBEoYRaBqmSSRV6AmqFsP5aNwe2SXLbvPJEDAFi4Kx2vztyOHcdzanpoFEI4g0xERCGv3IuAN8xiz6uoZfExysoVDmV6v8iuvFzZugUmxUX6a1gOs/JWV3+8wmWbMUf8xs9WuQ2OvcklJ/IGA2QiIgp5xV50izNWsahNgZg1rv9t41EcPp3v9rii0jLkF5di3rYTaPfETKw7eBoA0KphrF/GlV9cipxC+yz165f3cnvsgp0nvXrPWvS/hYIcA2QiIgp5V33kOmvpLDysds4gv3RJT9vjYf+3wO1xE/61BN2emYPZW48DAL5arpVgu7B3c7+My1pOr3vzelj86Ai0bxxv23cyx7HU3tEs9w1ERnaxl7IrY4RMPuJ1gCwin4nISRHZYtjWUETmishu/b8NDPseF5E9IrJTRMb5euBERES+kutFvm24Q4pF7QnE4qLCHJ67qxm852QuAGDHca2U29oD2gxyv9b1bcf4st22dRHgPSM6oFXDWPRrbQshsNMphSI20vFrsIqLDEOGoVRcbcsNp+BVme/0LwCc57RtMoD5SqmOAObrzyEi3QBcDaC7/poPRMT8u5uIiKgWMJaCKy0L7kDMGCiu2p/psM+62M2dLUccax0b84SjfRggl+hpLcbUlcfHdwEAHD7tmC992k2r639e3RfJ8fYFlrXouoWCnNff6UqpRQAynTZfDOBL/fGXAC4xbJ+mlCpSSu0HsAfAwOoNlYiIyP8+v2mA6famidG2x/9eGNw1d0vL7cH8hJ7NHPZVNoiMiwrH/H+ci9Q2DXwagFpnkI2z0md1aATAPnt9MrsQp3KLsGCHeQ5yq4axuG5wa9tzpliQr1T3UrCJUuoYAOj/tSYCtQBwyHDcYX2bCxG5TUTWiMia9PT0ag6HiIioYrlFpcjKL8b4fy7G3vRc2/bJ47tgROfGpq+JNMx07j/lfrFbMDDOcIeHOf6pP5JVgJTJM/CXlwvf4qPC0T45Hn1a1fdpakmxyQyydUFg12b1AAADX5mP1JfmYcmeU6bv0bFxPEZ0boyrUlsBqF2pLxTc/LVIz6zHkOl3rVLqY6VUqlIqNTk52U/DISIi0qzYl4Eez87BC79vw/Zj2fjX/N22fTcPa+v2dRZD+zxvysIFkqcUkI8XaW2ZJ36+2qv3iovUUiwsFjFdnJhdWIIrP1yOtFN5lRpjXpHWEMQ4gxwToWVjztl6HFn59tzijoYFfADwwOiOeGB0R1j0vPDOTRMABP//F6o9qhsgnxCRZgCg/9d6OXoYQCvDcS0BHK3mZxEREVXbliNnAACLdml3LY3BZESY+z+LxkV6JeWB6TLnrVIvxtejRT2v3ssahIZbBCVl5S5B6B9bT2BVWibembfL5bXHzxRivV4uztmtX60B4DgzH6FXClm1PxMvzdhu2777ZK7Dax8Y3QkPjO5k/5xsrcrFj2sPu21VTVQZ1Q2QfwNwo/74RgC/GrZfLSJRItIWQEcAq6r5WURERNXWJikOAHAqV5uhtAaTt3iYPQbsgSIQ/DOVpYbxWczu6QJolhhTqfdsXj8GpeUKJ5xKsFkDUudUDgC44N3FuPSDZVh7IBMr92VgdZq2lKnEEMRGR9hfJ4ZZ+h/XHnZ5v5FdGmPhI8Ndtm89ql30vDRjO16ZuaMSXxWROa9bTYvItwCGA2gkIocBPAtgCoDvReRmAAcBXAEASqmtIvI9gG0ASgHcrZQyb65ORERUg9YccFxvbr3VXz82wuv3CPL4GIUl9j+5rd00+ggzBKPOjU+Gtk/Csr2O5eAaxWsd9TLzim3B9bEzBZj882YA9tlfI+tFyGX/Xm7bljZlAk4b0ifqx3rfqe+zieYLKG8ckoKle7TxLtnD9UxUfV4HyEqpa9zsGuXm+JcBvFyVQREREfnLRwv3OTy3LgCLCve+Gml8lNd/PgPC2ljjo+v7o3G9aNNjjAvaspzKqBnzra0SY7RA9ozh2A//2mt77O056fHsHIe60w0qcWHizqiuTWyPfVmrmUIXv4uIiChkHDtT4HZfZQKr64e08cVw/KaoVJtBTk7QagTvfOk8fH/7EIdjYgzNNwpKHG/yigA/3TkEKx63z4FZZ9izCuwBsrGsWkK0Y6B7Mtu8+51zUxbn1IzHzuti+rqvJrmvFhtmyCPZciQbL8/Y5vZYIm8wQCYiopCRXeC+Y15UJQLkMJMZ1mBiXXgYYdG+pqjwMAxs29DhmDOGQDdPD1rHdtNmYi0i6N+moUPt53oxWgCcbXidMY+5uNRxcdzJnCLb44RKzLi7y5k+p5P3la4+Wbzf62OJzDBAJiKikFFY4n45TGVmkI3tjYNRiW3hnPtAPr/Yfi42HMoCYJ9xNgtS6+kd9bIL7QFyuiEIdm7S8f0arR2CCJDv4bw723Ui12WbN2kYnZrEV3gMkbcYIBMRUciYtvqg230nsovc7nO2Ra+aEKxK9FWEZgvnAKBZYrRDJYlHftwEwJ4m0dSkwoU1xzinUJttVkrhi2VpALTZd+cmHV8tP6Af59j62sgakBtZFwMaNXGTR23UtlFchccQeYsBMhERhQxrC2Mz7ur1munRPNEXw/EbW+k1i/mf+ZjIMNNmIqltGuCpCV3x9AVdXfZZS7At16tbPPvbVtu+otJyfLRwn8cZejOLHx3hsu2Oc9u7bNtxPKfC93rjit6V+mwiTxggExFRyPDUYe7hcZ29fp+yIG0UUlBchrnbTti+TncpFrGRYQ4zyLbtUWG45ex2iI10nzO8Rr/IsM4QpyTZy8h1eXo2AHud6L/1bYGJQ1Pcvld0hGvlkAZxkbh/VEcAQEK097nLzosEiaqDATIREYWMYg9d1pLivK/HW+Ih0A6UwpIydH1mNm79ag3e1rvauesMGBPhGCCntmkAABjSLqnSn3vPyI4u26xpGN2a13Nb8eNGD5VAbj+3HS7t2wKPVuKiBQD6ta5fqeOJ3GGATEREIcNs1tTKXTqC0Sc3pAJwn1MbSNYudQBw7IxWYi3cTUmIiDALjF9BVIQF/ds0cOhk54mxVJtz/WOlFNYd0maZtx3LNp0Fvn9URzx/cQ+37x8bGY63r+qDKwe0AgB87qZBiLNvbxtse5xf7L5iCVFFGCATEVHIaNfIfaUD8eIv4hi9DNp7C/b4akg+k5HrWlnDucbwfXrqQoPYSEABV320HOe+vgDFpeWIdDPbbObIaXs9aeeYurRc2ZqJDG6bhHp66kM9Q6B8+7ntvPqcqPAwpE2ZgBFdGnt9fKJejm7hTnbUo6pjgExERCFj+b4Mt/uCvbaxJzmFJXjguw0u252D3ofGdELalAkIswjKlcLK/Zk4kJGP4tJyREV4HxIYZ9CPZTk2X9l4KMs2lvaN4xEdEYY3ruiNn+8aajvGU45zdY3Wu+o5Nz8hqgwGyEREFLIm9Gpme2zWXrm2mL/9pOl2d4v0LAKkZeTbnm8/ngPlRdbIncO1ChPGVJXC0nLcenZb2/PLP1xuexytB92X92+Jth5m733pusGtAWiL/YiqigEyERGFrBJD97faGh8XlZZh/g43AbKbHGTnXOPi0nIs3FVxSsKAFG0x39aj2Q6vbdUw1vT4BrH2IDXMXYs8H7POmnuqWEJUEQbIREQUssb3bGp7XJkc3C5NE/wxnCp5/OfN+N/Go6b73C26234s23R7Rayz7E9M32zbVlRahr8PaoOL+zR3Ob55fdeGI/5mnTX3tCCTqCIMkImIKOQsf3wkPr0xFZf2bYlHxnVG++Q4WLyc4ezdqj4ae9HZrbpmbDqG+dtPOLR2NvP7pmO2x7MfONur9/am8YYZs0of1w9OgcUiGNe9qckrap61tB0DZKoO/2XJExERBalmiTFoprdTvntEB9w9ooPXrw0TeyMMf7p76jrb432vnO82gI8Ot6BYTxWJCndtvGEmITrcVqu4Mpzj409uSEXTRO1iwZvLi5cv7YGuzepV+nMrw7rYctPhM7i4Twu/fhbVXQyQiYgoJFiD2gdHd6rW+4gIFGo2v7VMKVjchKDGihLezpqaBcfGhXbuOFf6OJRpX+h3PLuwwtdfN8h9cxBfaVwvCgCw+cgZv38W1V1MsSAiopBg7aJXmXJmZgTwquKDL3lqTFKVrn5N9CDSKDK84vPivNCuXoy9vfPfB9uD37M6JOE/elOVmhYbGY6kuEh0alIzVTOobmKATEREdV5xaTn+8cNGAJVbjGdGpOYD5HIPH9iigX0hXHxUOB7xoj1zUpxrgGysOOFOXrFjbeHYSHtKR0SYBS9f2gOX9WuJb24ZjNF6U5VAEBEEYbNDqkUYIBMRUZ23dO8pzNAXs1V/Btn3KRZKKbw1d5ctZWFfeq7DfrMZ5PJyhZ7PzcH+U3m2bc3rx3iVT21W3OKGISkVvu5MgeOCwbFOQfB1g9rgzSt7V/g+/nYqtwhTVx4M9DCoFmOATEREdV6iIRXA24VsbvlhBvlIVgH+NX83rv54BQBg5JsLHfZb4+OSsnLcPXUdthw5g/TcIrcL7Z44vwsmj+/i9vPMmqJ4k2Ixpqs9IO7SNMGllXWwKWUlC6qi4P7OJiIi8gHj4jJvAkFPBPD5Er1CvS3ykawCnMotctlvXWB4MDMfMzYdw91T19leY+a2c9rjjnPbu91f1Z4dMZFhuLx/y6q9OAD+OX93oIdAtRQDZCIiqvPyiu0zrdXt57ZyfyZW7c+s5rsAi3enY8nuUwDsVSVEYEsFMSrTp6ytgfKBjHxsOJRV5c+2NhC5eVjFlSucje+h1Tuu6TzsqthZxXrPRAyQiYiozss25M4GSwOJ6z9dhb9/uhJZ+cXIK9JmgyPCLIgyzHC3SdJaOFsD4yJDa+zYyKpXaq1OW21rPeajWQVVfxM/i4nQ0miCqeMh1S4MkImIqM67f9oG2+PSICtv0OeFucgt0gL4qDALJv9sb+PcME6rLGGdQTamVRjzaxvGReKrSQO9/kxrDnJVLhasr80pqnyjkZrywx1DAACxUWz3QFXDAJmIiOo848yrp5rCgbL7hFa1whh0WgS4uHdzAPYxf7f6kG1/ieHrWPCP4TinU7LXn9epiTazenZH719jdSAjr+KDAqyb3q0vwySfm8gbDJCJiKjOOpJVgLUHMjGwbUMAQL3ocIzs0jjAo9LKuhl9vGifyzF7Xj4f8dFa9Y3ycuDxnzfhh7WHbfvLyrWgf8HDw5EYG+Hyek+evbAbpt4yCGOqUKv4SBCnVlhZ00A+Wbw/wCOh2or3HoiIqM4657UFKCtXGN+jKTo2jsfch84N9JAAuKZ5mKUrWCwCaxW1TUey8O2qQw77rR30wqtQkiI6IgxDOzSq9OsAoF2juCq9jmqOUgq7T+ba7hRQ5XEGmYiIgs7O4zn4cOFefLksrVrvY01NyC4sQUJ08MwJVZTmccMQrW2zNd/3nqnrXY559MdNALSFfTXpiv6t0KVpAr64aUCNfm5VOc/Wh4Kpqw5i7NuLsGzPqUAPpdaq9k+ViHQWkQ2Gf9ki8oCIPCciRwzbz/fFgImIqO4b984iTJm1A8/+ttUn73emoAT1YiqXhuDOrWdXvjSas4oWx1lzaJfvzaj2Z/maxSKY/cA5GN458KkqnnRqEg/AMW87VGw5kg0A2G/IF/91wxG89Pu2QA2p1ql2gKyU2qmU6qOU6gOgP4B8ANP13W9b9ymlZlb3s4iIiLxlbdsMABm5xUiI9k2AHBUehrCqdtrQlZZ5ntWM12e784rdNwOxCqaZ8WBibYttrAoSyu6ftgH/WcKcbG/5+r7MKAB7lVIHfPy+RERUhymlkJ6jVRyoTgMMo90n7U0ijmcXomElF7K5Y5HqV8Io0RfYje5qPgtrbRziTfAbV81SZi3qx1Tr9cHqRDYrWJgJljrgwc7XAfLVAL41PL9HRDaJyGci0sDsBSJym4isEZE16enpPh4OERHVBt+uOoQBL8/DjuPZ+G3DUYd9Vc0hDbfY/8QpBSQnRFVrjFbWLnTl1QiSC/SZ4bPcLJQ7fqYQAPDI2M4u+4ZVcXGdO389Mhy7Xhrv0/ekQNO+N380VD2xmr/9ZE0PplbyWYAsIpEALgLwg77p3wDaA+gD4BiAN81ep5T6WCmVqpRKTU6ufD1GIiKq/Z6Yrt0GP5CRj+zCEod9uVVsSLF4t+OkS1K8bwLkn9ZpQce0KuS2zt12ApN/2mTrnNcsMRoTh6YAsDcFAWCraWyWN+1u1rmqIsIsiAyve2v2p/ytJwDg/J5NAzySmmdthb7+YJbLvuSESJdt5MqXPxHjAaxTSp0AAKXUCaVUmVKqHMAnALxv8UNERCHp1ZnbHdpCA8CJ7MIqvdeMTcccnsf7qKva4dNaHeCTOd6Na+2B07YZ41u/WoNpqw8hr1gL+mMjwxEbqbVFzswrtr2ms94i2SzVubopFaHi6oGt0bJBDKL1ttOhZFx3x4sCY0pQmKXuXQz5gy/P0jUwpFeISDPDvksBbPHhZxERUR1hTKFIy8jHH9tOOOwf/daiKr3v0TOOAaw1EPUVb8qrZeQW4bJ/L8ND329waBN9xYfLAWjBrtn7ROrbrOkcRsZA/+2reld63KEkzCJB2TnRX8rLFZ76ZbPL12y9IAOA/CBuER5MfBIgi0gsgDEAfjZsfk1ENovIJgAjADzoi88iIqK6pbDEddFQx8bxePeavj79nJM5vl20FRFWcSULa0OQWVuO24Jio9jIMFhj4PtGdfTqvY1d8y7t29Lb4YakUAuQl+3NwNcrDuIjQ2fGOVuPI88QFFvTmcgznwTISql8pVSSUuqMYdv1SqmeSqleSqmLlFLHPL0HERGFpjNOKRWAFlhWNffYKiYiDNcNam17PrYKbZWryxicbT5yxmV/jPH2v1KI02e5zWaOr+jfEmueGo22eic7a+4yuRcmgvIQahTy909Xumy7/b9rsTrttO15Wka+yzHkiolMRETkF3tO5qBlg9gKc0CzCopdtu0/lYfi0qqXoyooLkNBSRlaNLCXMIv3cb3gV2buwG3ntPd4TGVLav358HBbiTdnD47phEb6QsNlk0eiSb3oSr13KAqzSIU1p0PBfd/aOzH+fXBrD0eSFTO1iYjI54pLyzH6rUW465t1FR57Jt91BhkAxveoevWB4/rCviRDZYgIHy1Osna580ZJBcGZRcSWg1ymFJrUi0aHxvFuj7VqXj+m2s1KQkGYJbRmkL1xRF9kSp4xQCYiIp+zzpz+uaPimqtmKRbRERY0rheNqwe0AgDkFJoH0e6MeOMvAFrXu+sHtwGgtUj2hdcu7+X1sRsraHrSqmEMrhvUGqO6NMbVAzzP7DEerrytR7MxL0Tq/pZ6ebdiwU72nPAGA2QiIvK5Ug8Lo3KLSpEyeQYGvTIPAJBlEiB/NWkQAGBkF63m7/5TeVUax5GsArx4SQ+kTZlQpdebqUw1jH/8sNHjfhFB/dhIfDpxAFo1jPX8ZgyQyYORby4M9BDqFOYgExGRzxlzbwtLyhzykDcdzgJgbwWcZgh+Zz9wNsJE0LGJVgfYWtLMWke4sjq6SVeojvBA1ZFlpkCVKaVMFz7WJQczvV98Fwrno7o4g0xERD437m177eIuT8922FfudCf4g7/2AgBuPbstujStZwuOASBan63NL/EuQD6SVeDQWGRsd993UTPGx1Vtg10Z1hbZjI+rrqgaCz5rs5vOSrE9fu9ae9nE9FzfljysixggExGRz2XkuVamsPp1wxHT7U9O6OayzZrOkF/kOUBeuS8DKZNn4Kwpf2LQK/MrMdLKMy6Oq0p8PHl8l0odb/00rjWruvwq3oEIZv9ZvA8pk2egvFzhaJZ94Z2xZfk/xna2Pb6gV3Pb4yw3C2MB4MJ3l+CblQd8PNrahwEyERH5nbGL3LZj2V6/zlrWLL2Cts5XfbyiagOrgjDDremKKiSYVaS4cUgKAO+rdFg/TnEOucqKSutegPzSjO0AgE+X7MfQKX8CALo2q+dQW9u5vfpH1/cHALelBItLy7H5yBk8OZ3NjxkgExGR353Ot88ojzE07DipB75X9DfvCNcwNlJ/vecqFt2be196rbqM1TAqatLWqkEMerZIdNgWExmGeQ+dg39e7V2nwMhw7U81Z5Arz9qK26xbY12x43iO7fHoro3Rq2WiyzG9W9UHYL/gdNeEZ+meU74fYC3FAJmIiPxuyKt/2h6/M2+37bG1BnLD+EiX1wD2YHR9BeXSosJd/5z99fDwSo7SO8YZ5IpmdYtKy03H1qFxgi3wrcgXNw3EXcPbo1kiG4NUVlS4Npta12aQj5+x31HJL7YHu1HhFvxjbCe0qB+Dn+8aCgBY8tgIfHurVhXGOqOc62YG+aYvVvtryLUOA2QiIvKpvem5Xh87Rl/MdzLb86KhRbu02q2FJWUY/Mp8DH5lvsMCOWuzDaMUvSWzr1kqkYNcVFqOqIjq/altnxyPR8/rwqoDVRCtn/u6NoO84ZC9dfSsLcdtjw+fLkCHxglYOnkk+rVuAABo2SAWsZFaYGztJpnnRRv3PSddf473nMxxee26g6cx2zCGuoIBMhER+VSRm2DkdF4xytzkJEzo2azC95237QTWpJ3G8exCHM8uxPdrDtn2eTsb6wvRhoC3ohzk3MJSxEXa80CfOL9yC/SoeqL1GeRCL6ug1B7mF0sbD5/x+CrrDHKOFwHy6Ldc6yqPfmsRJjnNMv/tg2W44+u1Fb5fbcMAmYiIfCpTr2Dx6Y2puGagvTvcsr0ZyDZpCgLAq7bJ87afcJiN3X5My71884+dWLzbMXdy6i2DKj1ub1lv22tj8Lzg8HR+MRrE2tNHLuzd3MPR5GvW75e6Vubtzx0nTLf3bV3f4+tsAbJJZ8qKShaW6xe3K/dnejHC2o8BMhER+czaA6fx909XAtAaF1zcxx4Q3j11He6bth4AcMuwtg6vK/AwwxdnLfVWXIbPl+63be+k10t+9889Lq8Z3C6pil9B5cz30Ma4oLgMJ3OKsP24PYg2SwUh/4mqYAY5v7gUz/y6BW0fn4FTtag28PdrDptuf8RQ1s1MmEWQEB1uWuatoouIMpMAeu4280C9LuBPKhER+cxl/15me5ycEOUwewrANtPbuF6Uw3ZPnfLy9H2/bTyKmZvtuY5PTN/sEvi8cmlP3D2ivUOesD9YZ7ydvz6jQ6e1zmbRhhlnBsg1y56D7Pr9dSgzH92emYOvlh+AUkDqS/Nqeng+9flNA9Agzv33o1Wj+CjTiwFrZYu7hrd32G491iw96tav1lRlqLUCf1KJiMgnnG/Rju/RDJ2axJve9nUOLN3lJlfEmIc8qG1DXDuoNR4Z5/8833eu6gPAvM6xlTU/eaKhm5lZRQvyH1sVC5O8+N0nc1y21SbhTheBZ7Vv5NXrkuIikZHr2shnyqwdAICUpDic0ykZMRFhWHvgNFJfmoffNx2tMN++JrpK1iT+pBIRkU/8uuGow/Mwi0BE8POdQ12ONQbI9aLDcXFf97m5T03o6rKtV8tE1IsOxzO/brVtq8k80zZJsQA8B/bWoCw6woKBbRsC4AxyTYvWm2YUlbl+b7w6c4fLtmAP8gpLynBYvzNhnOn9ctJArxeqJkSHI6fINcXix7Va2sayvafQrlEcCkrK8MmifQC0n23n7/Vyp+clZcF97iqLP6lEROQTD3y3wXS7iKB1w1iHbQ3iImyPNz03zmHhm7Nbzm7nsq1j4wRkO9VyrclKBRa95JqnWbUrP1oOQPv6v755EBY+MtyrxYjkO7ZFeibfG8bmNVbFJoF0MLn5y9UY9n8LAABtkuLQLjkOZ3dshHM7JXv9HmEW8Vie8OqBrfG/jdrF7uytWkrT3G0nXNp1W/dZ7TjuecFqbcMAmYiIfCIhOtztvj56Jy8ra0evqoqNdA2o84orLl3lK94EyNYZ7fyiMkSGW9AmyT91mck9a0qL2d2FSU4LRYHgr5e8dE+G7XHTxGj8+Y/h+O/NlavYIiIeO0AOTGmIjDzXi4fXZu90eH7XN+scnl/03tJKjSPYMUAmIqIqSc8pwt1T19kW8Vzupl00oC2wM6pusGg2E+uuO5g/WD9//6n8Co8ND+OscaBE6iktx84UuOwrKXWNEoO5XvKaNMfyak2r2FnxdF4xth/Ldkgn+W71QQDAxKEpsFgEKUmxLq/7aZ29csaCHfbqLY+P13L+h3f2fha7NmCATEREbm0/lo1tR81vnQ54eR5mbDqG12ZruZw5hgC1fbJjANzRsJjtw7/3BwCsf3oMdr003qtxLHlshMNzY9WL1y/vBQA4bVK6yl8y9IuC/5vtmsfqzHkxFdUca/fBr1ccdNheUFyGt+ftsj235rk7pxEEk1dmbnd43qqBaxDrjTUHtC58O47bFyk+9tNmAPa0kzev7OPxPYwtqevFRKB5YnS17woFGwbIRETk1vh/Lsb5/1rs8Zhi/fa1tfnAQ2M64ZtbBjsc88yF3QAAFgHO69EUANAgLtLrhUUtG8TiPzek2p5/Z6he0b5xPFo2iMHzF3X36r18wouYt1G8thBxqJfVBci/jDOmBzPtM/9pUyagWWIMAPv3cjDq7ZSmVN3ukdYFjEbW9tIRlbjrERlmQUS4BSVBnr9dWe4TxoiIKKR5WtFv/GOooAUWc7aeQM8WibhvVEeX44d1aIS5D56Djnpzj6oY3a0JXv1bTzSIjcSUWduRlqEFOQJgyWMjq/y+VTG4rb0RSUlZuWl1ihYNYtGteSJiTPKlqeYVlpTb/l84l9uz5yoH7wyyNe8dAN67tm+138/6833df1bYtr1yaU+Xz6rIhb2b498L99a5AJkzyEREZMq5bJvRx3r5J+txn+kd7jYfOWN6vIhUKzi2umZga5zXoyleuLiHbVteUc0HNcZGJFvdpKBsPJSFjYeyamhEVJGsAvvCM+ulnzV/NhAtqRfuSsfUlQcrPlC3dI/WZOfj6/vjgl5Vb1n+mp6SZP1arQv/rh3U2jZL7W3e/PgeTREZbkFEmAXFJjndtRlnkImIyNSCne7bKL8+x3FFu7XJQE0x/gEP9CI4a7c2q/8s3merbnGmoObyosmzL5cdwJWpLZEQHYH/Lj8AAGjRQEutsJYZ9HeKxeLd6bj+01UO2y7u0xwxEWEVdn88kqUtNBzbvWm1xvDpYu1i9puVB/CPMfbW1Bf1tgfdYYYZ5Mv7t7TVSHb2/rX9AGjpHluPnsFHC/fi9nPbmx5b23AGmYiITHmaQa7noaRbTQi32P98DdKbcASLl2Zsxyt6E4rkhLq1cKk2uv0crY721JUHMPLNhRj55l+2Ox7W7yNrisUSfZbWX5yDYwC48L0laPfETBzK9FwRJSkuEhN6Nav2GFrpNcm/XnEQfV+ca9seY8hJNuYnn93RPIf+lUt72oL6jYeycOxMIV6dtQP5NVhu0Z8YIBMRkamL+2gzSmar05vXj6np4TjYdDjL9lgqkS/pD+UeJh0v6+e+9B3VjDv1jnPWxjLGaivWxWhl+oz/v//a67dx7Dph3tp6X3oeAGDNgUzT/Uop7E3PRVpGPprVq1ppN6NHz+tsut2YR9+ygf3nu32yvQKNMff56gGtbI+7Natne1wQxJVAKsMnUwAikgYgB0AZgFKlVKqINATwHYAUAGkArlRKnfbF5xERkf9ZWyVb6xwbGUtEGRkrTfhTbGTwZAgam4U4L2x0Tr+gmmdWrcHKWs+6yI8NQnadyEFxaTnmb3efsgQAGbmuzTkA4POlaXjh920AgFJPHT68lBgTYbq9naE0o/Gi0/iZ1o59r1/eyyEl5KI+zbHtmJaLXxjElUAqw5c/uSOUUn2UUtbfjpMBzFdKdQQwX39ORES1RKGbFf2eqlsMalcz6Q5XGWavAq3MEEA4d2LzFJxRzYgKt8DdTQZrukHnptVbQFpYUobez/+BOU7tlwFg7NuLcMG7SxzqLgPAlL/1dHi++cgZPPTdBpdKGsaZ5U4+WOgaF+V6cfn7vcPcfq/2bploe5wQHYG0KRNwRarjz1+coVJLMDdbqQx/XtpeDOBL/fGXAC7x42cREZGPrT1gv+m3/qD9sadmCvEmf3z9wayTXqAYZ9icg5sMk9l3qlki4pBfa5Sgf782jIu0bfN0AejOsTOFOFNQgpdnODbz2OKmqgugzboa/brhKH5ef8RWi3jethPIKyrFzM32oPuagdW/MIw1ORc9WiS6bPvhjiF4akJXiAhevLg7frhjiNv3NFavqSsBsq9+kykAf4iIAvCRUupjAE2UUscAQCl1TEQa++iziIjIz0rLyh1yNW/+cg1+vfssNE2MdgicndVkPvD71/ZD8/rVz8msrjKHANlxBnnXidyaHg6ZiI4IM72wM1tEWVxWjqjwMCzZfQqZ+cUO1R3csbY5P5iZj3nbTmB0tyYAgEd+3ORy7Pe3D0HvVom2NtjOMnKLselwFm75ag2crwN98fNVUbUMqwEpDTEgRbsjdP2QFI/HGmefne+i1Fa+mkE+SynVD8B4AHeLyDnevlBEbhORNSKyJj093UfDISKiqsopLMH2Y445xpl5xfi/2Tvwf7N24IbPXFfiB8KEXs3Qt3WDQA8DpWXltvJgzmXCSj2t4KMak5lnnt9rDDgn6zWR3/xjF1Jfmou/f7oS93273qv3v+SDpbbHt3y1xvZ4WIckl2MHpDRAVHgYRMT0Tsh7f+6x5SP7IOXY1PS7htoe3zeyQ7Xf7/rBbWyPi+rIDLJPAmSl1FH9vycBTAcwEMAJEWkGAPp/TbPTlVIfK6VSlVKpycnJvhgOERFVkVIKPZ/7Azd9sRqAY23U5IQo/GfJftvzj6/vjy3Pj8PEoSk1Pcyg8s783ej01CwArikWj4/vGoghURWczteC0o8X7cMpNwvmzJSXK4e7CADw/oI9mPTFaoQ7zRJ3bBzvEJQ7vw7Q0hWcu9JFhluw8ZmxXo+pIq313GsApl0gK6tjkwRb0O1u7UJtU+2zIiJxIpJgfQxgLIAtAH4DcKN+2I0Afq3uZxERkX8VlzlWrjCWcmrqVGKqWWIM4qPCbTNvocYaEKzab19E5Xx7uW2jOFDt4K6SRcrkGaaBrNW+U3ku216fsxN/7jiJ/yze57B990nzlJtWDe1l1QpKylwqQYzq0hiJsebVJ6oi0tBqu76P3tcaaPu72UpN8cUMchMAS0RkI4BVAGYopWYDmAJgjIjsBjBGf05EREHMOcBrmmgPisucFi81jNcWNrnLpazrjM1KAG0m8fs1hxy2GQMRCi73OqUWeKoQ4Tyja5Rd6L5bYkmZdzkShzILHJ6/+Ydjp8rrBrWBLxlnjZsl+qamubWj5R1fr/PJ+wVatX9ylVL7lFK99X/dlVIv69szlFKjlFId9f+aV8AmIqKg8YdTmSpjQ5DXZjv+0W6h77NYBBOHpnhc5V4XObe47vrMbHyltzC2HRNE1TbI0fgejl3prvZQOtBTgHzn12urPIavJg0EAFziVNHiQIZjV71hbrrZVZXxojbBR10x69r3Oi9tiYjI5mSOvSxZQlQ4oiPC0LFxvIdXaJ67qLttxXuocA4InCtYAIHv8kcaY86tlXNg6Km6g7uZ4KLSMpzIrnopv3M6JSNtygRk5pvPQkeE+ef7x/i1+qorpr8WFAYKA2QiIjJlre8796FzXfaZtZ8ONZ5qMc+6/2x8ffOgGhwNefKjyd2NmEjvm7g4L760b7dfFK19anTlB6Z75oJuAICBbe0XmTERYVjz5BisenJUld/XG43r+eZnua7UP7ZigExERDavz7GnURS4+YP32z1nYfGjI2pqSEHLOQfZqEWDGJ/fFqeqa1zPtV62u+YhZg6fLjDdXmqYWfama+KyySNNt3doHI+0KRPQt1V927aLejdHYmwEGif4p9a3tTlKVLhvuj22S47X369uhJZ146sgIqIa0yA2slKzb3VVmIfb31VoxkZ+NrZbE4zr3sT2vDJtwP/9117T7caKDVHhFux95XyXY4Z1sF8oGTv2mbnBUDLx3lHVr0/syaz7z8b3t/tu3UB8VDh6tKjn8PU6Ky0rxxk36STBhgEyERFVCiszaDwtSqpKu2Lyr4+u748P/94f94zQAk+zFJmbh7UFALRsEIO0KRNs28d2a+JyLAB8s9K+KDM8zGL6nud2SrYtAKxoIZuxVXvLBq55077UpF60Q0qHL1hEUO7he7/Dk7PQ+4U/kK6vddh69Ayu/HC5x5bcgcLfckREIa7vC3/giembUe60yqZHi3qmx9e11epV5SkH2blBBAWeiEBE8PC4zg7Br9H87ScA2FMqftZrXburYvHun3sAAOd1b2q6/6ExnXDj0BS8fGlPbHxmbIXfF7H6nZl+ret7/mKClIjAXWW7p3/ZYns8a8sxAMChzHysSstEMK5l9U1tDyIiqpXunroOp/NLMHXlQduq/o6N4zGoXUO8cFEP09fUj/V8mzhUWDz8VTfOBFLtcWnflnh73i7b8w56BZenf92K64ekOBxrDaYBIM7k/3e4RXDfqI625940+ogIs+CHO4agc1P3NZmDWZiY3z1ZsS8D/11hn22PjwrHsr2n8NvGowBcmxAFA/4Ek0+lTJ4BAG6vzokouMzYdMz2+KOFWtev64e0wQ1OwYBVw7hIjzOnoYSnoe65YUgbhwDZWC/48Z8349W/9bQ9v/nLNbbHj53X2eW9/nfvsCqNoTaXSzRLsUjPKcLVH69w2PbQ9xsdnleUmx0IvAdEPsOcO6K6wex28dMXdEOL+jFY/rj5KvxQVD82Ep09dF+j2ic2ynHhnrEiw7erDtoeO/+9M7urkhSEQZ+/WURQ7pSNMvCVeRW+LhjrhTNAJp/5YllaoIdARJXg7qLWrCTWzcPaYunkkT4rCVVXXNy3ucu29slxARgJ+YJz23Rj4GYsC5ddWOpwnLGhhzUw9tR4pK4ScWxJv+7gaYeKLv5qfOIPDJDJZ35Zf8T2uKyutdQhqoOyC0orPog8CjOZ+RrZpXEARkK+YDaTaa1AcfVAeytq48XliM7JDq+beutg3HRWSkjOIIdZxOHc/O2DZbbHT03oirVPj3F5Tbdm5ouBA40BMvlMqSEoLnW+x0JE1bb+4Gm8PXeXQ+3Vqvhr50mkTJ6BH9cddtn32mW9qvXeocbszrBZy2mqvaZc1guN4qOw5cgZHM3Sqlu8Zmiok+qUM9y5aQKevbB7UKYN+JuWg2y+7/L+LVEv2nWh4rZj2X4eVdUwQCafMZbB4Qwy1RZKKczffsKlxFkwuvSDZfjn/N246YtVVX6P7MISTPx8NQDgxd+3uewf4OO6qHVdiUlNK7bhrt2m/K0npt7q2CY8u7AEq9NOY+iUPwEAU1fa85FDMA52SwQOi/TO6ZRse5wYU3EVj2DCAJl8Ji0j3/bY7I8GUTD6esUB3PzlGvxv09FAD8WjjYeybI+X7smo8vvc9tUal20jOtv/iNWmHMFgYHZhdcOQNgEYCfnK1QNbY2h7x25wnu7alJTy752VtkjPfj7i9LrO9WMj3M6oB2tVHAbI5DPGHwrOIFNtsV4PPB/5YRM2HspCyuQZ+HXDEc8vCoDFu9Ntj+84t32lX59dWILUl+Zhxb5Ml32fTRxgexxu4Z+FyjD7VccmIXWb80VRUWlZgEYSfMIsjikW1nSj7s3tecbvX9sPz1zQzfb8Pzek1tj4KoM/xeQzxhzkfi/ORWZecQBHQ+Sdn9dpwXBxWTkufn8pAOD+aRsCOCJXSimcKSixPbc29KiMDQezcCq3yGX7mqdGQ0Rst0IZH1eOgmuEHKQTYuQjBSVlGN/DXgqROed2FqcUiz93nAQAfHBtf9u2Cb2aYdKwtrgytSUAoG2j4Kz6wl+F5Df7T+UFeghELpbtOYWHvtvg8ZiJQ1NqZCzemjJ7Bz5ZvB+AFhwfO1NQ6ff4v9k7TLdH66Wr3r+2Lz6bmIrGCcHX0SqYmVXKY0n4uueSPvZyfnnFpSgosc8a5xayGoxVZl4xth51XXRn1kXw+Yt6YNptg5HCAJlCDdMsKNC2HDmDRbvSHbZd+5+V+Hn9EZSWlWPr0TOmrwu2KizWDneAlsuXV1S5W7qnnf5o3TKsra3BRbTeCCEhOgIjuzTxwWhDi/W33AOj7S2FjfVyqW645ex2tseHMvORX1xmy51tnRQbqGEFnXUHs2yPD2R4niSLiQzD4HZJfh5R1bHVNPnNs79txcz7hoVkqRsKDhe8uwSAeevzotJyXKKnVLjsKwmeANk5VelQZgEOZR7BW1f29upna8amY7h76jqHbWEWwXe3D8buk7nMl60ufbpYIHj9cq1EXig2iKjrerRIxId/7487vl6Ly/69HOEWwTkdG+HO4R3Qv02DQA8vKJnNJNcmDJDJb7Yfy0Z6ThHqxUQgKtzCQJmCyt70XLfVVoIpp7Dfi3NNt5crwLngxKr9mejZIhEx+srx/afyXIJjAIiKCEP92EgMSGFJt+qy/l4rVwpXpLaq4GiqzWIj7XcGSssVYiLDMJBlEd1qUq92lztkgEw+Yc03rh8bgax8+2Ki49mFGPjKfDx9QTfcPKxtoIZHIS67sAT1oiMcanVf9J757DEAFJaUYf72E7j5yzX448Fz0ElPRwi05y7shuf+p9Uu1rpVCf72wVJkF5biZHahrf3tb/echW9XHcSGQ44pJPFR4cgtKsVFvV3bI1PVROopKsVlwXNRRf4RF+WYOsOKL54VFGs/E89d2K2CI4MT/+9StWXmFWPEG3+Z7rMGzjOCvMYs1W3707Xvw7wiz4tpljw2AkPbJ+FUbhGm663Tx769yKF1qr+Vegi0Jp5lv8gsKi2HUgrrDmZhz8lcW3AMaMH/t6sOYbtTh6rNz41F2pQJ6NA43vcDD1FReoAcTGk55B+xkY5zir9t5N81d3IKS2wLGfu3qZ2z7AyQqdqMq3mNs8eANhMH2GdZiGpCblEp9qbn2p4v1BfqvWDSOc6oUXwUGsRFIqvA8fs4r9j/dU73pudiye5T6PDkLEz6Qut0Z6y3OsjpVm73Z+dg3vaTXr//P8Z0YpqTH0TpC/JYC7fuq+gCm+wKS8qRX6ydr5jI2rlolVELVVtmrvt6x4X6rEpUeO38AaHaqcezczDqzYW250WlZfhu9UFbzWOjb28dbHscHRGGsjKFfel5+H3TMdv2NEPJwu9XH8K783e7vM/RrIJqtase9eZC/P3TlQC02qF703ORpq8CT4yJwD+v7uvymltNuuK5c+NZKVUeG7nXrZmWftOrZWKAR0L+5lyOLD6KWarOXv1bTwBaypF1gowBMoWsC99bYnv81ISuDvs2H9FyIDmDTIHULDEGj/202XRfSVk5Vj4xCpueGwsAmL31uMsx01YfhFIKZeUKj/60CW/O3YVZm+0B9MmcQgyd8idem7PTq/HsPJ6Db1cd9HjMqDcX4mSO1tjj/Wv7oWlixfWJJ/RqZrq9UXwU6kW71iGl6uvfpiEWPzoCV3KBXp2XFBfp8PyD6/oFaCTBKzpCz8kvLUeBfuettpY9ZNRCPhXhVDLqx7WHATBApppTWOJ6q7uguAxdmtoX2r1/rf0PW7PEaDSpF+0xgPx6xUFc+8lKtH9ipm3bnd+ss733rM1aUP3Leu9aVI97ZxEe/3mzLbc5u7DE5ZizOiQhXQ+QkxMqXg1+87C2Dl+X0ZqnRns1LqqaVg1jmb4SApz/Hw9tH7w1fAMlMkwLhv/ccdK2cDWqlv795/0B8qlx3ZvijTk78c7VfXDzl97f/iWqroe+34CC4jI8PK6zy75fNx7BjuM5AIDf7x2G5vVjbPs6OlWoaJ8ch73prgXul+/LcNmWMnmGw/MzBa6BrlHaqTxsMyycW3PgNMItgtdm22eez+veFEv3nkJMRBg+XLgXQMUB8tqnRqNBrDa79eT5XfHyzO0AgCv6t8SlfVt4fC0RVQ1riLuyToa9+Ps23DCkDQDXibPaonaOmoJW08RobH5+HHq0cMzHKwmiurJUN/287ghmbTmOQ5n5tm2P6MHyliNaUBpmEfRokYiGTrdKjeY+eK7Dc+stQ29UVPfzqo+X465v7HWJT+cV49IPljkE3/eM7ICcwlLM237SVmi/foz72e2HxnRCUnyUrTnFRYaWuK9f0RtDOzTyevxERNVhvFtsvQMW4VywvZaodoAsIq1EZIGIbBeRrSJyv779ORE5IiIb9H/nV3+4/vHV8jT8usG7W6PknXCnTlIsph6cXp6xDSmTZ2BaBfmwtcnEz7UKEAlR4bh7RAeHfQNS7B2v1jw1Gksnj3R5vbEL2uwHzsas+89xOebB0Z1MP7tfa88dtU5kFzk8f+j7jQ7Pl04e6XJx6TymN6/ojY6GMm3ONY21fONwt/nIRET+EmmYLc4pLEVkWO1tEuaLGeRSAP9QSnUFMBjA3SJirQr9tlKqj/5vpvu3CKxnft2K+6dtCPQw6pT4aMfsHevtbQq8d+fvxou/b8PP6w7jk8X7AQCTf96M4lo8y29Wp/ibWwcBABrF22eLEwx5xo3io9DCkGphplPjBLR1WrkOADefbd70xlMHPrMx5jqVjWquL8T78Y4htm1/POgYoF/WvyXmPmSf5U6Kd5wND7MIlj8+Cv+8qo/bsRBR1fx819BADyGohRku5nMKS2rt7DHggwBZKXVMKbVOf5wDYDuAWpP0ZgwKzBb3kPfWGhYCOZd1sy7WI/969MeNuMhQVcQot6gUb83dhTfn7sKnS/a7zF5uOpxVAyP0rfziUhw7U+ASaAL2ldOPndfFtq1Vg1iv3vesDklISYq1zdzOdQpS46PC0bSea1UJT7VwrekSZjY8MwZpUybYZloaJ9jfu6Iufs7NCwAgLiqc+ZFEftCvdQNsfm4sNj4zNtBDCUrGXzu5RaWw1NLZY8DHOcgikgKgL4CV+qZ7RGSTiHwmIqb3HkXkNhFZIyJr0tPTfTkcr4RbxHa7cteJujvL+f3qQ+jx7ByUVaJOa2lZOZ6YvtmhBqwz6/s9OFrLg3T4zNuHmL3EKxm5RQ5tgaliD363Ad+vOYxNh88gM8+1NvWjP27Ev0zq91pd/uFyfw7PL7o9MwdDXv0TMw0l16ysdzH6tq5v29a1mXcto7+5ZTD+emSE7XnHJglImzIBr13WC7/fOwwAsOKJUbb9aVMmoG/r+h5nkB/+wX5BYsyBvrB3c9SPdZwFbp0UixuGtMFnE1Pdvt9bV/bGd7cNdpixISL/S4iOQGIsyyaaCTO0396bnoecWtxcxWcBsojEA/gJwANKqWwA/wbQHkAfAMcAvGn2OqXUx0qpVKVUanJysq+G4zWLRfCoPsMkqLt/aJ79bStyi0q97vZUWFKGvi/MxdSVB/Hg9xvcHmcNYs3KuA1s29BWW7YySsvK0f+leej45CyPwTk5mm4oMTZl1naX/TM3u9b3BbQyZ1a1Kc3iZE6h7fFHi/YBAL64aQBm3nc2bjorBc0StfSJ5Hj713d5/5bV+swrB7RyyBH+8Y4hmPOANrscbhGsTss0vTgBHNOMIsMstpJsV7mpn/vCxT0wsksTt2P5W7+WGNSOZaaIKHiE1eIZY2c+CZBFJAJacPyNUupnAFBKnVBKlSmlygF8AmCgLz7LH2L1Li/Wtoh1mbcB0PK9GbYrv/UHs9ymn1hnzNzlGRkT9isqgWW1/lCW7fEzv22t8HilFP6zeB+DaYNNh89gpaEywgqTEmVW5/Voijj9Z8CsHq+ZzYfP4Ey+d8f6y+HTBbbH+/SybO0axaNb83p49sLutn2JsRF45dKeWDp5pM8Xi6SmNERnvb7y6rTTKCwpR78X55oe27FxPFo31FI8rkxtiQm9mmHr8+MwrCOrTBBR3WCpQ5ldvqhiIQA+BbBdKfWWYbtxCfWlALZU97P8xdoGMd/POci5RaW47as1+O/yNL9+jhnrbVhPt4CN1h087fD86o9XmB7naQYZAIzxyPDXF5geU1Bchr92nsRzv21F6kvzcIXhVv+iXekeUy2UUmj7+Ey8NGM7hr/xF9YdPA2lFJ7/31bc/MVq3PvterevrUs2Gi4qAG228qqPVyArvxgPfrfB4f/fthfG2R7/fu8wPHl+Vzw2XruLMuTV+ba7DNmFJbYyPUZKKVz43hL0efEPP3wl3ttmktPbooH5ortrB7WucEGeL83Y5JjyUV6ucDKnCEPbJ2Hzc2PxgF4FI46taomoDgl3ipAnDk0JzEB8wBe/nc8CcD2AzSKyQd/2BIBrRKQPAAUgDcDtPvgsv7DOIFvbIvrLir0Z+GPbCfyx7QQGtG2ILk3r+fXzjKxpiq/M3I6L+zT3eOsWAN79c4/D8w2HtFnkaKeWkbYA2c2CIGPayml9xvGCdxdjy5FsdGwcj//dOwxXfrTc1pLazFtzdzkstDJatPuUw/O/fbDM5ZjnLuzmkh9dl+w/lYeL319quq/PC46zmRf2bo7YyHD8evdZSIyJQIpeoSFRr7NbUqbQ+anZWPH4KAx+db72/q+e7zDzWlKm5Z0rpf3/D0QR+A8X7sWUWTtctgdLPu7dU9ehW/PhEAAWEZzKK8KZghJ0aZrgUEmDiKguC+lFekqpJUopUUr1MpZ0U0pdr5TqqW+/SCnluoomSMRGaNcJmw67D9Kqq6xc4d0F9qDzj60n/PZZznYez0F2oZYu8euGo5j0xRo8+N0G/ORUWeKHNYdwKrfIIU95Qk/7jYDfNhx1ee+iEu9nkAFg+7FsW9OG3Sdz0eXp2abB8bLJI/Hfm7WsnH//tddlf2lZOeZuO4EbP1sFABjczn2d5fcW7HHZ9trsHVi25xTyKpGX7Y2i0jJbowp/X3BZHT9TWPFBuj6t6gMAereqbwuOAcf/zwCw9aj9/8l57ywGAOw5mYOjWQXYm55r29fxyVnY4uHixh+OZhWYBsd3DW9fo+Nwdk4nxzUUL+t3Nc55fYHtwq0uX6gRETkXAgiSOYsq4f092FMsPly4F5PHm89UVkduUSlen73D4Tb4W3N34b5RHfHf5Wn4cd0RTL9zqEMzAF8pK1cY984il+3T1x/B9PVHcFaHRmiaGI3vVx/Coz9tcjhmfI+meP+6fug4bxfembcbj/60Cfsz8hxmc3fqlT9inGaWrZyvHsf/c7HbsbZrFIcXL+mBTk0SkJwQhcYm7XWVUhARdHhylsP2ryYNwi/rj9i+hul3DUVKUhz6vjgXny9Nw+dL07DmqdFYtjcD9+lpFx84Bd7T7xqKvhU0eqjIJ4v24Y0/dtme//XwcIdA1BNr2+Lbz2mHx8/vWuHxu0/kYNKXq3H/KHvTihcv6YGnfzHPZnrzit5u2w6Hh1kwpF2SraObsU34zhM5eOSHjfhBv6D64Lp+Dq+94N0lSJsyocLx+srQKX/aHvdpVR8bDmVhUNuGtsW2gfLpjak4nV+MgS9rM+/ztrteBJ/KdU1ZISKqK8qd6r3X4glkBsgAUN+P5VoycovQ/6V5tudJcZHI0Fe5WwMiAPht41Fc2Lu5z24RF5WWIdxiMc3TNFp74DSmrT6IxU6pCgDwxhW9AQD3jeyId+Zp5cH+/ddeCIBeLevjvB5Ncft/1wKwX2Q4c/flfHvrYKRl5OHxnzcD0GaMmzvliBrruL74+zZsO5qN5fsyHOotW0WGW3DlgFa4coBjRYBOTeKx64Q245lq+P9g5tIPlmHr8+OqlRfqXClix/EcrwLkqSvtnew+WrQPV6S2RIfG2uKv8/+5GGEWwf/08mKAFmiNeVu78JllKHHWskEMNjwzxiG1IiEqHIWlZfhbvxYeF6m9cWVvnGUIPo1+MNxtMLZKrmlvzbVffFw9oBWemNAVsRFhQdGpKSLM4lC/2Mzorp5Tm4iIajPnGeSGcbX3rlkdWm9Ydb7IoSwuLUfK5BlImTwDZeUKk3/ahHFvL3IIjm8/tx3WPj0GFzq1hgWAB77bgBFv/FXtcVh1fmo2bvxsFRbt9lxb+u6p60yD46S4SFugaLGI7dZ8w7hIfPDXXtzx9VqH4921khYRrHpiFJ67sJvD9h4t6uFKvbzVdYNauwTHVr31z/10yX7b7KbxnC5/fCR2vnSe26/vjwfPdTtrCmj1m43504Nf0RapHT9TiL92nsTGQ1mYveW4aRc0Z79vOoptxxwvSNIy7JU1vl11EAt32f9/vL9gD67/dCX+8f1GPDF9s8PrRr+1CEeytCoN245lY/ORMw5pBcZgf/6Ok/bxt01C/dhILHxkOADg65sHYeOzY7H1+fMqDCJb1I/B/le97wi/7xX7sb9tdE2/8ZVjZwrw1txdKCotw1ZDOseUy3qhXnQEwsMsQZN7DGil5swsfnQEWjX0rlEJEVFt5Pw7zp8TkP7GGWTdZf1aYv6OqucF/7rBXoO2/ROuXbV/v3eYrX7qo+M6Y9PhLPRuWR83D2trW2B1MDMfK/ZlYFDbhrZgJjOv2FY2ytvb2Bn6bdwle05hyR4t+F315CjUj4lEUWkZjmQVoFliDHo/b69CUD82AgsfGYF60eE4klXgspDo21sH48bPV2HV/kzbNmNJMLNuXlaN60UjypCC8fNdQ23vX9HX9PXNA9HzOfNqCRufHWtbXObJQ2M6OdQIBhxTH249py1em70TXyxLQ05RKTo/NdvlPZ6a0BW3nN3O7WcUlpThnqmuFTP+OW83+rVugCs/slfm+P3eYSgtV3h9zk6X42c/cLYt5/fd+bvx5AR7qsWHC/fikXGd0fUZ1/EBwLvX9LXN5LdJinM4t5FeBpAigqm3DMKHi/bh84kD8MTPm/HdmkMAgN4tE/HO1X2x83g2OjROgMUieP3yXnjkx02479v1iIkIw5D2SYj3cWWGc1/7C8Vl5Q5NTjY+G7xdrNxd7DE4JqK6ztgECQiehdNVwRlkXUlZObLyS6qcI/i24davUdN60dj2wjiH5gKtGsZi4SMj8K9r+qJ3q/r49e6zbPuu/ngFhrz6J275cjXyi0uxfK+9fm3K5Bl4ZaZrAwijzLxihxlWq8YJ0YgMtyAhOgJdmtZzCSzXPjUGiTEREBG0bBDrsj8mMgz7neoM99ID15Skiv/wW39ELu/fEv0qkeebEB3hsvgJABY9MsKr4BjQzveKx0fh21sHAwC+nDTQIe0hNjIcz13UHWd7qEf70oztKHfThTAjtwhdnnYMWq3BaUFJmUNwDGg5u5eYVJ3Y9dJ4dGlaD8smjwQATFt9yOXioP0TM221rB8Z19lhn9mdiaoY2qERvpo0EGEWwf9d3guf3JCKVU+Owq/3DEPbRnE4r0czdNC7T15haHJx61dr0OPZOS7fJ9WRV1SKYpMyf97+vw+E0yaNQiad1TYAIyEiCqzwWhwgcwZZZ71F/PnS/XhknLbY54ul+/Hc/7Zh3dNjXK6KjMrKFXKKStG7ZSIuT21lWyS186XzIBC3FR6sereqj90vj0dHfeHZ8exCHM8uxMTPVmNVWqbDsR8v2oeHx3Z2+56fLtnnss3dLO3sB87G9HVHMHl8F69yOEd1aYxpqw+5bHdXgs0oNUVLwahKEPfVpIFYe+A0OiTHV7m9Z9PEaDRNjPY4Y/3VpIFo+7jr7L9Vuydmmr5+n1NA+NfDw70e15LHRuBEdiFO55XY/p+6m4E0+seYTrh7RAe0qB+DB77bgC5NvWuhXBVjunnOm93/6vkO523BjpM4kByHo1mFuHZQ62p99rMmjWJ+unNotd7T3zo10f5f3DeqI+4Z0QGZecVoUq/25uEREVUVZ5DrgKb1tMU1xwwls5773zYAwJt/2G+FL9hxEkNfnY9cQ3/xz5fuR05hKf4+uI1D29io8LAKg2MrszxoY3B836iOtsednpqFlMkzXJpDAMD7C+yVGZolRuPzieb5kADQpWk9PH5+V68XOD1/cXdc2rcFkpwuFryp69qhcTzSpkzAuSazwd7o36ZBlYNjb4kINj4zFk9N6Iql+iwuAPzfZT1tj60l3NYeyLS1Ov7QUA0jbcoE2+z0rPvPtm0PtwjuG9kBU28dZNu25+XxaNkgFv3bNMRopyB03yvnIyrcghGdk7Hl+XHY8eJ5tiBr/6vn4179++GSvi2wdPJIzNbbHQeCiKBrM3tN7xd+34aJn6/GE9M344Fp6x3ScoymrjyIX5xSX4yyC0vwo1MpwtYNY9G/TfUqjfhbg7hIpE2ZgIfGdEJkuAVNE6ODYhEhEVFNq80BMmeQdfVjI3A8u9C0c5h12+Ld6bjpi9UAgHNfW4BxPZriWFYBFuzUFl41S4xBZLgF71zVB03qeV7N7sm02wbjmV+32KovWMuPTRya4tDG9uL3lyIy3IKf7hiKwtIyW5APAJufG+vzhgRR4WF4+6o++GblATw53V5KbGj7JJ9+TiAlxkbYco2ti9AsFsGhzAK8t2APZm4+hqT4KDz8w0aIAPMeOte2SG71k47VNbo2q4e0KRNcGqwsf3wkYiLCHKp0OLNYBDtfGu+wbeUTrtU7ANRohzh3fr37LHR6apbL9l82HMUvG45i3kPn2tIyAC34tS5MdFe9Zdke++LRfa+cjymzd+CSPu4XXBIRUXDJKSyt+KAgxQBZ969r+mLs24tsFR2M+aad9dvX13+6yrYtI6/YoTQXAJzVQQsUL/FQNcEbg9sl4aExnXDH11o5LWttXrM0j+LSclz43hKX7f7s1nXtwNYY2r4RRrzxF6beOsgv9ZuDgfHrunN4e7y3YA9eNVSSUAoY9eZCAFrVj2STus0AXLoPNksMfEDra5HhFky9ZRDeW7AHywx581aj31qIi3o3R2xkGF68pAce/n6jbd+WI2ds1UqMrN//H13fHxaL4AkvakMTEVHwKCqpmYZZ/sAAWWfNGwQc6xMDWtvlihbvPTi6U7Vvo8576Bzk693XzuvRDJueG4sEp4oAP9811NaVa3C7hlixz/X2tVmdYF8SEbRtFFejzSECraLayI/5ocFMbTO0QyMM7dAIY95aiN0nc132W/P8nfPYL35/KW47p51DAGy8QB3XvamfRkxERP5Um9PLmIPspW9XHcKwDo3Qr3V9l31pUybg/tEdXV9USR0aJ6BXS/v714uOcPnm6te6Af51TV/MuG8YXrust+n7eFpQSFX3/e1DbI9vP8ex5NsYNoCwubMKLZ8/XqQtLl2y+xRW7suw3ZYz5vQTEVHwu/Vse9Ue58YhtQlnkA2evbAbntcX5plZsucUBrdriEWPjMDJnEIkxkTgdH6J2+P95SJDJYi1T412KOvWo0W9Wn3FFswGtm2IbS+Ms9V8vmpAK7RLjq/gVaHn7I7JiIsMw9AOjTB3m/va4k+c3wW7T+TauvSlncrD3z9dCQC4fnAbAMAFvZv5f8BEROQzT07ohk8W7wfg2nq6NmGAbGBWYaF9chz2ptvLeJUroHVSLFp7Ufu3JiTFR6FJvSicyC7C7/cO82u5L3JsiMLg2FxyQhS2vnAeikrLsGjXKWTmFeGxn7QFeXteHo9uz8zBXSPa49az20FE0KReNN5bsAfDDZ0k/7viAAAgJaniNt1ERBScanOAzBQLg6aJrpUnfr1nmMOMrbuSVYH0x4PnYvfL49GjRaLHyghENSkqPAxjujXBVQPstZDDwyzY9fJ4PGDI2fe0qLVlg7q3oJGIKFQYf//XNoymDGIjw22lvQDgl7vPQnxUOCYH+QKsxJgI0zrKRMHiy0kD8ckNqab7nIPgz2/Sane/cUVvpgsREdVi9aJrb6ICoyonxtJeffTSU83rx+CeER0AAAsfGR6AURHVbud2SnbbkS8q3IILemm5xs9f1B0jOjdG2pQJuLx/y5ocIhERkY2oIMoPSU1NVWvWrAn0MLBg50nERIRhcLu60wCDiIiIqCZYy+UGezlYEVmrlDK9vVl75779aETnxoEeAhEREREFCFMsiIiIiIgMGCATERERERkwQCYiIiIiMmCATERERERkwACZiIiIiMiAATIRERERkQEDZCIiIiIiAwbIREREREQGDJCJiIiIiAz8HiCLyHkislNE9ojIZH9/HhERERFRdfg1QBaRMADvAxgPoBuAa0Skmz8/k4iIiIioOvw9gzwQwB6l1D6lVDGAaQAu9vNnEhERERFVmb8D5BYADhmeH9a3EREREREFJX8HyGKyTTkcIHKbiKwRkTXp6el+Hg4RERERkWf+DpAPA2hleN4SwFHjAUqpj5VSqUqp1OTkZD8Ph4iIiIjIM38HyKsBdBSRtiISCeBqAL/5+TOJiIiIiKos3J9vrpQqFZF7AMwBEAbgM6XUVn9+JhERERFRdfg1QAYApdRMADP9/TlERERERL7ATnpERERERAYMkImIiIiIDBggExEREREZMEAmIiIiIjJggExEREREZMAAmYiIiIjIgAEyEREREZEBA2QiIiIiIgMGyEREREREBgyQiYiIiIgMGCATERERERkwQCYiIiIiMmCATERERERkwACZiIiIiMiAATIRERERkQEDZCIiIiIiAwbIREREREQGDJCJiIiIiAwYIBMRERERGTBAJiIiIiIyYIBMRERERGTAAJmIiIiIyIABMhERERGRAQNkIiIiIiIDBshERERERAYMkImIiIiIDBggExEREREZMEAmIiIiIjKoVoAsIq+LyA4R2SQi00Wkvr49RUQKRGSD/u9Dn4yWiIiIiMjPqjuDPBdAD6VULwC7ADxu2LdXKdVH/3dHNT+HiIiIiKhGVCtAVkr9oZQq1Z+uANCy+kMiIiIiIgocX+YgTwIwy/C8rYisF5GFInK2uxeJyG0iskZE1qSnp/twOERERERElRde0QEiMg9AU5NdTyqlftWPeRJAKYBv9H3HALRWSmWISH8Av4hId6VUtvObKKU+BvAxAKSmpqqqfRlERERERL5RYYCslBrtab+I3AjgAgCjlFJKf00RgCL98VoR2QugE4A11R4xEREREZEfVbeKxXkAHgNwkVIq37A9WUTC9MftAHQEsK86n0VEREREVBMqnEGuwHsAogDMFREAWKFXrDgHwAsiUgqgDMAdSqnMan4WEREREZHfVStAVkp1cLP9JwA/Vee9iYiIiIgCgZ30iIiIiIgMGCATERERERkwQCYiIiIiMmCATERERERkwACZiIiIiMiAATIRERERkQEDZCIiIiIiAwbIREREREQGDJCJiIiIiAwYIBMRERERGTBAJiIiIiIyYIBMRERERGQQHugBEBEREVHd8f61/bDjeHagh1EtDJCJiIiIyGcm9GqGCb2aBXoY1cIUCyIiIiIiAwbIREREREQGDJCJiIiIiAwYIBMRERERGTBAJiIiIiIyYIBMRERERGTAAJmIiIiIyIABMhERERGRAQNkIiIiIiIDBshERERERAYMkImIiIiIDEQpFegx2IhIOoADgR5HEGgE4FSgBxFkeE7M8byY43kxx/NijufFFc+JOZ4Xc7X1vLRRSiWb7QiqAJk0IrJGKZUa6HEEE54Tczwv5nhezPG8mON5ccVzYo7nxVxdPC9MsSAiIiIiMmCATERERERkwAA5OH0c6AEEIZ4Tczwv5nhezPG8mON5ccVzYo7nxVydOy/MQSYiIiIiMuAMMhERERGRAQNkIiIiIiIDBshEVCuJiAR6DES1GX+GqDJC7fuFATIFlVD7AfSGiIQHegxBKiLQAwg2ItJI/29YoMcSTEQk0fCYv2PsGAOYEJFUEWkc6HEEoZD6ncsfjhomIn1E5FYRaRrosQQLEekqIkMAQHHVqI2IDBGRTwAMCPRYgol+Xn4A8IaIdAv1YFA0sSLyLYBfAUApVRbgYQUFERkkIr8C+I+ITBKRKP6OAURkoIh8DeBVEekpIowFAIhIdxFZBuBZAPUDPJygEaq/c/lDUUNEJEJEPgLwKYBzAbwsIoMCPKyAEpFEPQCcBuBFEXlZRDoEelzBQERuhVY2Zx2A9aHyC6ki+qzOewBmQmtrej+ASfq+kJwZVJp8/WkjEbkTAEI96BGRXgDeB/AjgB8AjAQQ0r9fRMQiIs8C+A+AWQDCAdwNoHdABxY87gcwXSl1oVJqFxC6v1esQvl3bkj/Aq1hPQEkKqX6K6X+Du3c18a+5b70CLRSg70B3A4gCUBKQEcUPFoDeFIp9W+lVCFnBG16A9illPocwJsAfgZwsYh0Ukqpuv4L24yIhItIMwAnANwM4E4Rqa+UKg/xIHkggD1Kqf8CmAsgGsBB685Q/F5RSpUDOABgolLqGwAvA2gDIKQvwEUkTEQaAlDQgkGIyKUi0hJAjP485L5fdCH7OzeUf3n6nYj0E5FO+tMyAFfqs6Z/AzAYwCgR6asfW2e/yYxEpK2IxOhPPwHwDAAopfZCu6XVM0BDCyj9vETpjxsC6AFglYiMFJE5IvKE/n0TMt8rACAi14jI8yJykb5pPYBUEWmvlMoDsBrAGmgXWCGRomM4JxcCgFKqVCl1DEBbAGkAFgKYrJ+j8gAOtUYZzsvF+qb/AbhURF4GsBlASwD/EpHHgND4XgEAETnX6W7lNAAb9HSTDAA5AJoFZnSBYzwv+gREPoBzAIzU009uB/ASgHf0Y0Ll++US/e/NBH3TBoTo71wGyH6gBzszoN3e+6+IjFFKbQTwGoAPAHwI4BUArQC8YL0SC9yI/U9EUkRkFrRbe1+LSGel1AGl1FERidQPKwCwN3CjrHlO52WqiHRVSmUCyADwDYBLoH3PHAPwjIj0ruvfK4Atr/YOAI9CC/peF5FbAOQC+ArabT4AyAIwD0CsPotaZ5mckzdE5CYRiRORNgD2K6UOQ5stvQvADyISJSJ1emGNyXl5TURuU0qdANAF2sKiJ5RSgwF8AWCY6Gse6jIRSRCRnwFMB3C7fuENAEVKqXKlVJH+vdESwM6ADbSGmZyXBgCglCoE8Dm0v9tzlFLnAXgSQA8RGR+wAdcQEUkWkV8APAQgE8DnInK5UiodwE8A7tUPzUKI/M5lgOwjTrN6DwPYoJQaAuAXALfo2x8HsB3A5fptv3cA7AdwVs2NtOaYnJOVSqlRABZAyznuru+zpg+0AHBIf22d/d70cF7+BPCSiLSFtkikJ4CjSqlf9dtbMwFc7PKGdZB+ETAEwBT9a78bwHAAo6Cdhw4iMlqfIc2A9r1zJkDDrRFuzsloAGcDOA2grYj8D8Dr0GaRDyilipRSJYEac01wc17OFZHxSqn90PKOD+uHrwVwEkBRQAZbs4qh/U75O4CjAC4HXGb8ugI4oZTapQeOA2t+mDXO+bxcYdj3AbSUimQAUEodAbAEQCjciWkPYKlS6hyl1IcA/gHgQX3ftwC6iMioUPqdW2eDkACIBmzBTx4A6x+lRABbRKSb/oupCMBVAKDf3moBYFvND7dGWM+JtUzZVgBQSr0HLT/wWhFprJQqE21xXqZSar1oi4yeFpH6gRh0DXB3Xt4H0B/AbQDSoc0qX254XWMAy2pumDVLRG7Qb3taZ7q2A2ghIuFKqXkAtkBLTUoHMBXAO/r3zSgAAiDS7H1rMy/OySYAwwB0AnAEwD4A/ZVSFwJoJSL9AzJwP/PyvAwXbYHRHADP6r+brwbQHdof+DrHcF7qK6WKoP0OmQdgF7Tb5J3046y/exoCyBeRidB+t/Ssiylc3p4XpVQutJnSG0WrOHUntIvQtAAN3a/08zJcRGKhXTx+pW8PgxaXWGOTzdBSc/5Z13/nGrG+ajWJyBhot/Z2isgipdT3IrIEwFUish7aN9EvAL4UkScBzAYwXUTeADAI9j9qdYabc5IJoK+I7NIP2wJtcUgStBmddgAGiMgCAIUAHlBKZdX86P3Hy/OyFdoCvdZKqSdEpIuITIE2e3pU319n6H+Mm0ILeMuhpdjE6X+YDkGbRe8AYAe0X9BvA0hSSn0tIq0ATIZ2G/3WuvL9Uslz8j20hTM/QPuZKTa81SilVJ2Z4ankefkO2vdKc6XURyJyLuxVGyYppQ4E4EvwCzfn5TYRuV8pdUo/Zjm0i6grAbyklCrVXz4OwDXQJm6uU0ptqunx+0tVzgsA6L+XRd/WHcD1Sqk6k4Li5rzcCuB+pdQJEQnTJ626Qpvgsy7u/EK/4Kxzv3PdUkrxXxX/QftlvBLabe++0L7hHtb3dQbws+HYZwC8rT/uAy3B/dJAfw01cE6+hZYPmQDgaQC/Q7tllaqfr/v0110HLe9pdKC/hiA5Lw/qr6sH7ZfR2EB/DX44J2H6fzsB+Fp/HA7tNueX0HJHPwNwPbQKMICWQ/qy4T0iA/11BME5+RLAC/pjAWAJ9NcRROflRf1xBICmgf46avC8vAvgJ6djL9XPVwcAsfq2oQCuCvTXEUTnJQ5AhL5dAv111PB5+dnpmK8AXKk/bmp4jzr1O9fTP84gV5I1N1ZpV1SDAKxVSv2q75sH4C0R+S+0YO+QaIuutkPLeXpARCxKqQ3QVobWCV6ckzcB/KCUelFE2iml9un7lsKeCzhNaWWH6gwfnZccpdQOaLNidYJ+e/cFAGEiMhPaRUAZoFVkEJF7oC1K7AbtYuESaAuJXoU242FLM1GOM6a1VjXPSRm0iy8o7S9YnVnE6YPzskI/tgTA8Zoev794cV7uA3BURM5VSi3Ut0/XZwVnA4gXkRFKqTqVsuWL8wJgBIDt+s9SnVCV8wJtQfR+EXkBwN9E5Dyl1OG68jvXG8xBrgQRuQnaYo8X9U2bAVwjIin68who6RIvQiud0xDAfSJyP4CPoOU81am6gV6ck3Bot3De1p/v1193G7SareuAutf5y4fnpc78kga00krQct0aANgD7fyUABgh+gIh/YLiBQD/p7R80o+hVR5Yqb/urwAM3W94TszxvJjz8rwoaOflOcPrroBWlWEBgF76xE2dwfNirirnRc9BngStyU49ACOUViEntAR6Cru2/IN2ZfkLtPJS6wB00be/A+12+VIAX0PLg5sF7VZNV2gJ/18CGBzoryHA52QGgCb6/geg1VIcEOivgeelxs/N2dBy+qzPPwBwJ4CJ0GbYAe3CvSm0vNoUfVt9AC0CPX6eE56XQP+r5Hn5HkBbw+vODvT4eV6C/ry0gVbR4h0A/QI9/oCeu0APoDb9g7ZwCgCmAPhOfxwGbaZ4mP68FbSAOCTydCpxTr4AEKU/jw30uHleAnZeYgFEwZ7ndh2AV/XHGwDcqz9OBfBtoMfLc8LzEmz/eF54Xvx4XqYFerzB9I8pFpWglLK2KX0HWs3RcUpLDTijlFqi77sDWpm3OpUy4E4lzkk+gFL9Nfk1PtAaxvNiTimVr7TavNafjzHQyrYBwE0AuorI79Bm2tcFYow1jefEHM+LOZ4Xczwv5ip5XtYCodWt1RMu0qsCpdRxEfkUwBPQOu6U6bk8T0LLQ56k6lhObUV4TszxvJjTc9wUgCYAftM350A7Tz2gdYU7EqDhBQTPiTmeF3M8L+Z4XsxV5rwofUo51AnPQ+XplSjKReRHaCuoi6AtwNutlAqpVslWPCfmeF7M6TMUkdAK9k+HtiAkA9rtvuxAji1QeE7M8byY43kxx/Nijuel8jiDXAV6wBMLrbPZcGg1SGcHdlSBxXNijufFnFJKiUhfaPlwbQF8rpT6NMDDCiieE3M8L+Z4XszxvJjjeak8ziBXkYg8DK3e5mNKa10Z8nhOzPG8mBORltAaO7zF86LhOTHH82KO58Ucz4s5npfKYYBcRdZb54EeRzDhOTHH80JERFS7MEAmIiIiIjJgmTciIiIiIgMGyEREREREBgyQiYiIiIgMGCATEQUhESkTkQ0islVENorIQyLi8Xe2iKSIyLU1NUYiorqKATIRUXAqUEr1UUp1h9Ye9nwAz1bwmhQADJCJiKqJVSyIiIKQiOQqpeINz9sBWA2gEYA2AP4LIE7ffY9SapmIrADQFcB+AF8C+BeAKdCa1EQBeF8p9VGNfRFERLUUA2QioiDkHCDr204D6AIgB0C5UqpQRDoC+FYplSoiwwE8rJS6QD/+NgCNlVIviUgUgKUArlBK7a/Jr4WIqLZhq2kiotpD9P9GAHhPRPoAKAPQyc3xYwH0EpHL9eeJADpCm2EmIiI3GCATEdUCeopFGYCT0HKRTwDoDW0tSaG7lwG4Vyk1p0YGSURUR3CRHhFRkBORZAAfAnhPaXlxiQCO6S3MrwcQph+aAyDB8NI5AO4UkQj9fTqJSByIiMgjziATEQWnGBHZAC2dohTaory39H0fAPhJRK4AsABAnr59E4BSEdkI4AsA/4RW2WKdiAiAdACX1MzwiYhqLy7SIyIiIiIyYIoFEREREZEBA2QiIiIiIgMGyEREREREBgyQiYiIiIgMGCATERERERkwQCYiIiIiMmCATERERERkwACZiIiIiMjg/wEqB02P5sbAXQAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "mydata.plot(figsize=(12,6))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notez que vous devez connaître le \"code Quandl\" de chaque ensemble de données que vous téléchargez. Dans l'exemple ci-dessus, il s'agit de \"EIA/PET_RWTC_D\"." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Modifier les formats\n", "Vous pouvez obtenir les mêmes données dans un tableau NumPy:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "mydata = quandl.get(\"EIA/PET_RWTC_D\", returns=\"numpy\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Spécification des données\n", "\n", "Pour définir les dates de début et de fin:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "mydata = quandl.get(\"FRED/GDP\", start_date=\"2001-12-31\", end_date=\"2005-12-31\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Value\n", "Date \n", "2002-01-01 10788.952\n", "2002-04-01 10893.207\n", "2002-07-01 10992.051\n", "2002-10-01 11071.463\n", "2003-01-01 11183.507" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Value
Date
2002-01-0110788.952
2002-04-0110893.207
2002-07-0110992.051
2002-10-0111071.463
2003-01-0111183.507
\n
" }, "metadata": {}, "execution_count": 8 } ], "source": [ "mydata.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "mydata = quandl.get([\"NSE/OIL.1\", \"WIKI/AAPL.4\"])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " NSE/OIL - Open WIKI/AAPL - Close\n", "Date \n", "1980-12-12 NaN 28.75\n", "1980-12-15 NaN 27.25\n", "1980-12-16 NaN 25.25\n", "1980-12-17 NaN 25.87\n", "1980-12-18 NaN 26.63" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
NSE/OIL - OpenWIKI/AAPL - Close
Date
1980-12-12NaN28.75
1980-12-15NaN27.25
1980-12-16NaN25.25
1980-12-17NaN25.87
1980-12-18NaN26.63
\n
" }, "metadata": {}, "execution_count": 10 } ], "source": [ "mydata.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Limites d'utilisation\n", "Le module Quandl Python est gratuit. Si vous souhaitez passer plus de 50 requêtes par jour, vous devrez créer un compte Quandl gratuit et définir votre clé API:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# EXEMPLE\n", "quandl.ApiConfig.api_key = \"A remplacer par votre clé API (API KEY)\"\n", "mydata = quandl.get(\"FRED/GDP\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Codes de base de données\n", "\n", "Chaque base de données sur Quandl a un ID de base de données court (3 à 6 caractères). Par exemple :\n", "\n", "* CFTC Commitment of Traders Data: CFTC\n", "* Actions américaines (Core US Stock Fundamentals): SF1\n", "* Données économiques de la Réserve fédérale américaine (Federal Reserve Economic Data): FRED\n", "\n", "Chaque base de données contient de nombreux ensembles de données. Les ensembles de données ont leurs propres ID qui sont ajoutés à l'ID de leur base de données mère, comme ceci :\n", "\n", "* CFTC pour le blé: CFTC/W_F_ALL\n", "* Capitalisation d'Apple: SF1/AAPL_MARKETCAP\n", "* Taux de chômage américain: FRED/UNRATE\n", "\n", "Vous pouvez télécharger tous les codes d'un ensemble de données dans une base de données en ue seule requête API, en ajoutant '/codes' à votre demande de base de données. La requête retourne un fichier ZIP contenant un CSV.\n", "\n", "### Bases de Données\n", "\n", "\n", "Chaque code Quandl comporte 2 parties: le code de la base de données (\"WIKI\") qui spécifie d'où proviennent les données, et le code du jeu de données (\"FB\") qui identifie la série temporelle spécifique que vous voulez.\n", "\n", "Vous pouvez trouver les codes Quandl sur leur site Web, en utilisant leur navigateur de données.\n", "\n", "https://www.quandl.com/search" ] }, { "source": [ "# POUR LES ACTIONS (STOCKS)" ], "cell_type": "code", "metadata": {}, "execution_count": 12, "outputs": [] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "mydata = quandl.get('WIKI/FB',start_date='2015-01-01',end_date='2017-01-01')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Open High Low Close Volume Ex-Dividend \\\n", "Date \n", "2015-01-02 78.58 78.9300 77.700 78.450 18177475.0 0.0 \n", "2015-01-05 77.98 79.2455 76.860 77.190 26452191.0 0.0 \n", "2015-01-06 77.23 77.5900 75.365 76.150 27399288.0 0.0 \n", "2015-01-07 76.76 77.3600 75.820 76.150 22045333.0 0.0 \n", "2015-01-08 76.74 78.2300 76.080 78.175 23960953.0 0.0 \n", "\n", " Split Ratio Adj. Open Adj. High Adj. Low Adj. Close \\\n", "Date \n", "2015-01-02 1.0 78.58 78.9300 77.700 78.450 \n", "2015-01-05 1.0 77.98 79.2455 76.860 77.190 \n", "2015-01-06 1.0 77.23 77.5900 75.365 76.150 \n", "2015-01-07 1.0 76.76 77.3600 75.820 76.150 \n", "2015-01-08 1.0 76.74 78.2300 76.080 78.175 \n", "\n", " Adj. Volume \n", "Date \n", "2015-01-02 18177475.0 \n", "2015-01-05 26452191.0 \n", "2015-01-06 27399288.0 \n", "2015-01-07 22045333.0 \n", "2015-01-08 23960953.0 " ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
OpenHighLowCloseVolumeEx-DividendSplit RatioAdj. OpenAdj. HighAdj. LowAdj. CloseAdj. Volume
Date
2015-01-0278.5878.930077.70078.45018177475.00.01.078.5878.930077.70078.45018177475.0
2015-01-0577.9879.245576.86077.19026452191.00.01.077.9879.245576.86077.19026452191.0
2015-01-0677.2377.590075.36576.15027399288.00.01.077.2377.590075.36576.15027399288.0
2015-01-0776.7677.360075.82076.15022045333.00.01.076.7677.360075.82076.15022045333.0
2015-01-0876.7478.230076.08078.17523960953.00.01.076.7478.230076.08078.17523960953.0
\n
" }, "metadata": {}, "execution_count": 14 } ], "source": [ "mydata.head()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "mydata = quandl.get('WIKI/FB.1',start_date='2015-01-01',end_date='2017-01-01')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Open\n", "Date \n", "2015-01-02 78.58\n", "2015-01-05 77.98\n", "2015-01-06 77.23\n", "2015-01-07 76.76\n", "2015-01-08 76.74" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Open
Date
2015-01-0278.58
2015-01-0577.98
2015-01-0677.23
2015-01-0776.76
2015-01-0876.74
\n
" }, "metadata": {}, "execution_count": 16 } ], "source": [ "mydata.head()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "mydata = quandl.get('WIKI/FB.7',start_date='2015-01-01',end_date='2017-01-01')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Split Ratio\n", "Date \n", "2015-01-02 1.0\n", "2015-01-05 1.0\n", "2015-01-06 1.0\n", "2015-01-07 1.0\n", "2015-01-08 1.0" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Split Ratio
Date
2015-01-021.0
2015-01-051.0
2015-01-061.0
2015-01-071.0
2015-01-081.0
\n
" }, "metadata": {}, "execution_count": 18 } ], "source": [ "mydata.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exemple Prix Logement\n", "\n", "**Zillow Home Value Index (Metro: Indice Zillow des loyers - Tous les logements - San Francisco, CA**\n", "\n", "L'indice Zillow 'Home Value Index' est l'estimation par Zillow de la valeur marchande médiane de l'indice locatif Zillow pour toutes les maisons dans la zone de San Francisco, CA. Ces données sont calculées par Zillow Real Estate Research (www.zillow.com/research) à partir de leur base de données de 110 millions de foyers." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "houses = quandl.get('ZILLOW/M11_ZRIAH')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Value\n", "Date \n", "2010-11-30 2454.0\n", "2010-12-31 2461.0\n", "2011-01-31 2484.0\n", "2011-02-28 2506.0\n", "2011-03-31 2526.0" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Value
Date
2010-11-302454.0
2010-12-312461.0
2011-01-312484.0
2011-02-282506.0
2011-03-312526.0
\n
" }, "metadata": {}, "execution_count": 20 } ], "source": [ "houses.head()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 21 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2020-11-27T22:06:19.279569\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.1, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvaklEQVR4nO3deVyVZf7/8ddHQERRBHdARHNfQZDMasasRitHW2zSyjQrWydbZppxpvlWv6mZZmpazG+abS6Tmtlme2paWSqC4oIbuKCIsiiyyM65fn+cG78kKNuBs/B5Ph7nweE6932fz8HjeZ/ruq/7vsUYg1JKKVVZC2cXoJRSyvVoOCillKpCw0EppVQVGg5KKaWq0HBQSilVhbezC6hJx44dTXh4uLPLUEoptxIfH59ljOlU3/VdPhzCw8OJi4tzdhlKKeVWRCSlIevrsJJSSqkqNByUUkpVoeGglFKqCpff51Cd0tJSUlNTKSoqcnYpTapVq1aEhobi4+Pj7FKUUh7OLcMhNTWVtm3bEh4ejog4u5wmYYzh5MmTpKam0rNnT2eXo5TycG45rFRUVESHDh2aTTAAiAgdOnRodr0lpZRzuGU4AM0qGCo0x9eslHIOtxxWUkpdWPaZEj7fkUZmXrG9QYRrh3Slf9d2zi1MuQ0Nh3oYPXo0s2fPZuzYsWfbXnnlFfbv38/rr79e7fIvvvgi0dHRTVmmaoZ2pubw9oaDfLnrBCVlNio6m8bAuxsOseTui4no3t6pNSr3oOFQD1OmTGH58uW/CIfly5fzwgsvOLEq1dwdzjrDTfN/xte7BVNGdGdyTBgDutl7CmmnC5ny5iamvrWZxXfFEBkW6ORqlatz230OzjRp0iQ+//xziovtXfbDhw+TlpbG0qVLiY6OZtCgQTz11FPVruvv73/2/sqVK5k+fToAmZmZ3HTTTYwYMYIRI0bw008/NfrrUJ7DGMMznyXi00JY/eiveWbi4LPBABDc3o9l94wkyL8ld7wdy/ajp51XrHILbt9zeOazRHan5Tp0mwOD2/HUbwed9/EOHToQExPD119/zcSJE1m+fDm33HILs2fPJigoiPLycq688kp27NjB0KFDa/Wcs2bN4tFHH+Wyyy7jyJEjjB07lj179jjqJSkPt2ZPBuv2ZfLkdQPoGtCq2mWC2/uxfOZIJs3byKPvJ/DVI5fj6+3VxJUqd6E9h3qqGFoC+5DSlClTWLFiBcOHDycyMpLExER2795d6+2tWbOGhx56iIiICCZMmEBubi55eXmNVb7yIIUl5Ty9KpG+XfyZNir8gst2C/DjuRsGczDrDG/9eKhpClRuqcaeg4i0An4AfK3lVxpjnqr0+B+AF4BOxpgsq202cBdQDjxsjPnGao8CFgJ+wJfALGOMacgLuNA3/MZ0/fXX89hjj7F161YKCwsJDAzkxRdfZMuWLQQGBjJ9+vRqj0moPB218uM2m42NGzfi5+fXJPUrzzFvfTLHTheyfOZIfLxq/r43ul9nxg7qwmvfJXF9ZAgh7fU9p6qqTc+hGBhjjBkGRADjRGQkgIh0B64GjlQsLCIDgcnAIGAc8LqIVPRd5wEzgT7WbZxjXkbT8/f3Z/To0cyYMYMpU6aQm5tLmzZtCAgIID09na+++qra9bp06cKePXuw2Wx8/PHHZ9t/85vfMHfu3LO/JyQkNPZLUB7geE4h8384yMSIYEb26lDr9f42fiAAz35e+96tal5qDAdjl2/96mPdKr7tvww8Uel3gInAcmNMsTHmEJAMxIhIN6CdMWaj1VtYDFzvmJfhHFOmTGH79u1MnjyZYcOGERkZyaBBg5gxYwaXXnpptes8//zzjB8/njFjxtCtW7ez7XPmzCEuLo6hQ4cycOBA5s+f31QvQ7mx175LxhjDH37Tr07rhQa25vdj+vDVrhN8vz+zkapT7qxWO6Stb/7xQG/gf40xm0VkAnDMGLP9nCN3Q4BNlX5PtdpKrfvntlf3fDOx9zAICwur3StxghtuuIHKo2ILFy6sdrn169efvT9p0iQmTZpUZZmOHTvy/vvvO7pE5SLyikrZdSyXpIw8IrsHMiQ0oMHbPHKygBVbjnLrxWF0D2pd5/XvvrwnH8Qd5e+f7+bSWZfjXYshKdX40nOL2JmaQ3ZBCRMigp02aaBW4WCMKQciRKQ98LGIDAX+CvymmsWrO8eDuUB7dc+3AFgAEB0d3aB9Eko5U1Z+MXct3ML21JxftA8JCWBKTBjXRwbTumX9Jg2+snY/Xi2EB6/oXa/1fb29+PM1A7jvv/G8H3eU2y7uUa/tqIYzxrAi7igvr07iRO7/7YtcGZ/KgqnRBLRu+jMx1+ldaYw5LSLrsQ8d9QQqeg2hwFYRicHeI+heabVQIM1qD62mXSmPZIzhjx9sZ8+JPB67ui9DQwO4qJM/6/ZlsHTzEf7y8U5e+GYv00aFM+2ScALbtKz1tpMz8vhk2zHuvrwXXdpVP3W1NsYO6kJMeBAvr97PxIgQ/H3dfna728ktKuWvH+/is+1pxIQHce+vezEkJICUkwXM/mgnN8z7iYXTYwjrUPfeYUPU2I8UkU5WjwER8QOuArYZYzobY8KNMeHYP/iHG2NOAKuAySLiKyI9se94jjXGHAfyRGSk2BPlDuDT+hbewElObqk5vmZ3tnhjCuv2ZfLXawfw8JV9GN2vM92DWnPHJeF8NetyPrjvEqJ6BPHKmiRGPf8dT69KJDW7oFbbfmn1fvx8vLjv1xc1qEYR4S/XDSArv4T56w80aFs1sdkMR08V8HNyFstjj/BN4glKy22N+pyubu+JXMbP2cCXO4/zx7H9WDZzJHde2pPo8CBuigrlv3dfzMn8Em54/ScOZZ1p0tpq8zWhG7DI2u/QAlhhjPn8fAsbYxJFZAWwGygDHrSGpQDu5/+msn5l3eqsVatWnDx5slmdtrvieg6tWtX/W6JqOvtO5PHcl3sY078zd1xSdbhGRBgRHsSI8CD2p+cx//sD/HdTCks2pTBxWDCPj+133immC344wJc7T/DoVX0JqkNv43wiurdnwrBg3vzxILeNDKNbgOOntu5Pz+PhZdvYe+KXx+509Pfl5uhQbh/Zo9lNqY1PyebOd2Pxa+nFintHEtUjqMoyMT2D+OiBUUya9zP3LYnnowdG0aaJenfi6t9Go6OjTVxc3C/a9EpweiU4V1ZSZmPC3A1k5Zfw9SOX09Hft1brHTtdyNs/HmJZ7BFa+bTgf28dzqjeHX+xzLLYI8z+aCfjh3bj1cmReLVwzJejo6cKuPKl7xk/pBsv3RLhkG2C/UvN+1uO8vRnifj7evP7MX3o09mf7kGtScrIY+nmo3y3N502vt68cXtUldfrqX7Yn8m9S+Lp3M6X/951cY0TCn5MymTaO7FcO6Qbr02JrNWXYhGJN8bU+2yfbhkOSrmyD+NTefyD7cy/PYpxg7vWef2DmfnMXBLPoawzzL6mPxMigsktLGXzoVM8+ckuRvftxBtTo2np7djZRf/6ei/z1h/g4wdGOeTEfMYY/vLxLpbFHuGy3h156ZZhdG5bteebcvIM9yyO42DmGZ6/aSiTokKr2Zrn+DbxBA8u3cpFnfxZfFdMtX+T6sxbf4B/fb2XJ68bwN2X96pxeQ0HpVyIMYZrXv0RY+DrRy6v97BnfnEZj69I4JvE9F+0x/QMYtGdMfi1dPz0xvziMq54cT0h7f346P5RtGhgr2ThT4d4+rPd3PurXvxpXP8Lbi+nsJQH3ovnp+STPHxlHx69qk+jDBkbYzh8soANyVn8lJRF6ukCQtu3JqxDa4IDWtG+dUsC/HzoHuRH785tHf783yae4IH3tjI4JIBFd8bUaRaSMYYH3tvKt7vTeeP2KK4a2KXa5YpKy5m3/gCP/aZfg8JBpyYo5UA/JGWx90QeL0wa2qAPN39fb+bdFsXnO4+TU1BCQOuWBLb2YUR4EK18Gmfeu7+vN38a158/fLCdTxKOcePw+n+Djz10ime/2MNVA7rUGAwAAX4+vDs9hr9+vJM5a5NIPVXA8zcNdWjvKK+olMdXbOfb3fbADWnvR69ObUjKyOO7fRmUlP1y5/iwUPt0498OC3bIOH/lYFh8VwztWtVteFhEeOHmYaS9uYkHlm5l4Z0jGHXRL4fhSsttPLR0G2v2pJ9nK3V4Pu05KOU4t7+1maSMPH58YozDh32ags1muOH1nzieU8S6P4yu14fiiZwixr+2gXatvPnkoUvr9CFojGHud8n8Z/V+RvYK4o3bHTPHPzkjn5lL4kg5WcDDY/owISKY8A6tzwa4zWY4VVBCTmEpOYWlbD96mmWxR9ifno+/rzcTI4KZEhPG4JD6Hbz41c7j/H7ZtnoHQ2XZZ0q4ZcFGjmUX8t49I89evMlmMzy2IoFPEtL4fxMHMW1UTx1WUsoV7DqWw/jXNvCncf25f3TDppg6U3xKNjfN+5npo8J5ekLdTmyZX1zGrW9uIjkjn08fvJQ+Xeo3NPPxtlSeWLmDsKDWLLwzpl5HgFdYszudR95PwNe7BXNvHc4lF9XuHFTGGLYeyea9zUf4YsdxistsRPcIZM6USILrMLNqxZaj/PmjHUSGBfLunSMaFAwV0nOLuHn+RrILSrhqQBcGhwSw70QuK+JS+ePYfjx4RW/d56CUq3hk+TZW707n59lXEuDn3jPKnl6VyMKfD/PEuH48MLp2R2AXlZYz7Z1Y4lKyWTA1iisHVD8mXlubDp7k3iXx+HgJb00bUefLm9pshjnfJfHKmiSGhAQwf2pUvafL5hSU8tG2VF76dj+tfb14Z/oIBgXX3It484eDPPflHn7VtxPzbx9e76Phq3P0VAHPfrGbhKOnSc+1X3js3l/14s/X9EdENByUcgXHcwq57F/rmD4q/OwZT92ZzWZ4dEUCnyak8ez1g7l95IVPrVFabuO+JfF8ty+DV26JYGJEtadNq7PkjHzuXBhLZl4xL/0ugmuHdKt5JexHHT/2fgJr9mRw0/BQnrthsEP21ew9kcuMd7eQU1jKq5MjuXJA52r3LSVn5PPiN/v4OvEE1w3pxsu3RDTqMGNGbhFZ+SUM6Nb2bD0aDkq5gP98u4+565L54Y9XNGgIxJWUltu4/7/xrN2bwd8nDua2i8Oq/SAsKCnjsfe383XiiVoFSV1l5Rdzz+I4th05zY3DQ3hq/KAL7ofYkJTFnz7cwYncIv523QCmjQp36Myn9NwiZizcQmJaLj07tuHaIV259KKOFJWVk1NYyqYDp/gg/ujZI9gfuKK3w45HqQsNB6WcrKTMxqjnv2NYaABvTx/h7HIcqqi0nJlL4vlhfyZX9OvEP28c+ovLkB49VcA9i+PYl57Hk9cN5K7LejZKHSVlNuZ+l8T/rj9AhzYt+fM1/bmiX+dfnI8qI7eIl9cksSz2CL06tuGFm4cR1aPhx2tUp6CkjE+2pfHlzuP8fCALW6WP0ZZeLbhtZBgPXdGbDrU8ALIxaDgo5WSrtqfx8LJtvHvnCK7o19nZ5TiczWZY+PNh/v3NXny8WnBDZAjtW7fE17sFb/540D62PyWS0U3w2ncdy+EPH2xn74k8RGBwcACd2/qyKy2H9NxiROCey3vx2NV9G23K77lO5hez+3gu/r7eBPj50KmtL20dsNO5oTQclHKym+f/TEZeMeseH93gA8dc2eGsM/zt010kHD1NXlEZAP26tOWNqVGEd2zTZHWUldvYnprDhqQsNiRnklNYyqDgAAaHBHBp7w7079quyWpxZQ0NBz0ITqkG2HM8ly2Hs/nrtQM8OhgAwju2YcldFwNQbjPkFZXSrpVPk79ub68WRPUIJKpHILOu6tOkz92caDgo1QCLN6bg692Cm6M9+3xA5/JqIbRv3fAzwirX5X6HcCrlInKLSvlk2zEmRgTrB6XyOBoOStXTN7tOUFhazuQY173OuVL1peGgVD2t2p5GWFBrIut45K5S7kDDQal6yMwr5qfkLCYMC242VyNUzYuGg1L18OXO49gMTIgIdnYpSjUKDQel6uHThGP079qWvvU866hSrk7DQak6OnqqgK1HTmuvQXk0DQel6uizHWkA/HaohoPyXBoOStXRqoQ0onoEeszZV5WqjoaDUnWQlJ7H3hN5TBimvQbl2TQclKqDz3ccRwSuGdLV2aUo1ag0HJSqgy93HicmPIjObVvVvLBSbkzDQala2p+eR1JGPtcNrd2lKpVyZxoOStXSF9aQ0rjBOqSkPJ+Gg1K19IUOKalmRMNBqVrYn55Hsg4pqWZEw0GpWtAhJdXcaDgoVQs6pKSamxrDQURaiUisiGwXkUQRecZqf0FE9orIDhH5WETaV1pntogki8g+ERlbqT1KRHZaj80RPdexcgM7Uk/rkJJqdmrTcygGxhhjhgERwDgRGQmsBgYbY4YC+4HZACIyEJgMDALGAa+LiJe1rXnATKCPdRvnuJeiVOOYszaZAD8fro8McXYpSjWZGsPB2OVbv/pYN2OM+dYYU2a1bwIqrrA+EVhujCk2xhwCkoEYEekGtDPGbDTGGGAxcL0DX4tSDrczNYc1e9K5+7KetGvl4+xylGoytdrnICJeIpIAZACrjTGbz1lkBvCVdT8EOFrpsVSrLcS6f257dc83U0TiRCQuMzOzNiUq1SheXbufAD8fpl0a7uxSlGpStQoHY0y5MSYCe+8gRkQGVzwmIn8FyoD3Kpqq28QF2qt7vgXGmGhjTHSnTp1qU6JSDmfvNWRor0E1S3WarWSMOQ2sx9pXICLTgPHAbdZQEdh7BN0rrRYKpFntodW0K+WStNegmrPazFbqVDETSUT8gKuAvSIyDvgTMMEYU1BplVXAZBHxFZGe2Hc8xxpjjgN5IjLSmqV0B/CpY1+OUo6xISlLew2qWfOuxTLdgEXWjKMWwApjzOcikgz4AqutGambjDH3GWMSRWQFsBv7cNODxphya1v3AwsBP+z7KL5CKReTkVvEI+9vo3dnf+66vKezy1HKKWoMB2PMDiCymvbeF1jnOeC5atrjgMFV11DKNZTbDA8v30Z+cRlL7xlJ65a1+f6klOfRd75Slby6NolNB0/xwqSh9O3S1tnlKOU0Gg6q2Ssrt7FuXybLYo/w3d4Mbhoeys3R3WteUSkPpuGgmrXdabncvWgLaTlFdG7ry8NjenP/6POOmCrVbGg4qGbr2OlC7lwYSwsR3pgaxZX9O+PtpeeiVAo0HFQzlVNQyvR3YikoKWflfaPo11X3LyhVmX5NUs1OcVk5M5fEkXKygAVTozUYlKqG9hxUs/PPL/ey+dApXp0cwSUXdXB2OUq5JO05qGbly53HWfjzYe6+rCcTI/QU3Eqdj4aDajZSTp7hTyt3ENG9PU+M6+/scpRyaRoOqlkoLivnwaVbEYG5t0bS0lvf+kpdiO5zUM3C6+sOsOtYLgumRhEa2NrZ5Sjl8vTrk/J4yRn5zFt/gOsjgvnNoK7OLkcpt6DhoDyaMYa/frwTv5ZePDl+oLPLUcptaDgoj7YyPpXNh04x+5r+dPT3dXY5SrkNDQflsU6dKeEfX+5hRHggv9MT6SlVJxoOymO98f0BcgpLefb6IbRoUd0lzJVS56PhoDxSVn4xizemMDEiRE+PoVQ9aDgoj/TmDwcpLivnoTF6+m2l6kPDQXmcyr2Gizr5O7scpdyShoPyONprUKrhNByURzmpvQalHELDQXmUlfGpFJaW8+AVFzm7FKXcmoaD8hjGGD7cmsrwsPb07qwzlJRqCA0H5TES03LZn57PjcNDnV2KUm5Pw0F5jI+2HqOlVwvGD+3m7FKUcnsaDsojlJXbWLX9GGP6d6Z965bOLkcpt6fhoDzCj0lZZOWXcONwvfSnUo6g4aA8wodbUwls7cPofp2dXYpSHkHDQbm93KJSvt2dzoRhwXr5T6UcRP8nKbe3OjGdkjIb10fqkJJSjqLhoNze6t3pdGnnS0T39s4uRSmPUWM4iEgrEYkVke0ikigiz1jtQSKyWkSSrJ+BldaZLSLJIrJPRMZWao8SkZ3WY3NERE+yrxqkqLScH5IyuWpAF/TtpJTj1KbnUAyMMcYMAyKAcSIyEvgzsNYY0wdYa/2OiAwEJgODgHHA6yLiZW1rHjAT6GPdxjnupajmaOOBkxSUlHP1wC7OLkUpj1JjOBi7fOtXH+tmgInAIqt9EXC9dX8isNwYU2yMOQQkAzEi0g1oZ4zZaIwxwOJK6yhVL6v3pNOmpReXXNTB2aUo5VFqtc9BRLxEJAHIAFYbYzYDXYwxxwGsnxVzCEOAo5VWT7XaQqz757ZX93wzRSROROIyMzPr8HJUc2KzGdbsTudXfTvh6+1V8wpKqVqrVTgYY8qNMRFAKPZewOALLF7dwK+5QHt1z7fAGBNtjInu1KlTbUpUzdDOYzlk5BXrkJJSjaBOs5WMMaeB9dj3FaRbQ0VYPzOsxVKB7pVWCwXSrPbQatqVqpfVu9PxaiFcoQe+KeVwtZmt1ElE2lv3/YCrgL3AKmCatdg04FPr/ipgsoj4ikhP7DueY62hpzwRGWnNUrqj0jpK1dmaPelE9wgksI2eS0kpR/OuxTLdgEXWjKMWwApjzOcishFYISJ3AUeAmwGMMYkisgLYDZQBDxpjyq1t3Q8sBPyAr6ybUnV29FQBe0/k8eR1A5xdilIeqcZwMMbsACKraT8JXHmedZ4DnqumPQ640P4KpWrlx6QsAK7or0NKSjUGPUJauaX4lGw6tGlJr45tnF2KUh5Jw0G5pa1HshneI1CPilaqkWg4KLeTlV/MoawzRPUIrHlhpVS9aDgot7M1JRtAw0GpRqThoNxO/JFsfLyEISEBzi5FKY+l4aDcztaUbAaHBNDKR0+ZoVRj0XBQbqWkzMb21ByiwnRISanGpOGg3MqutBxKymxEh2s4KNWYNByUW6nYGT1cew5KNSoNB+VW4lOy6R7kR+d2rZxdilIeTcNBuQ1jDHEp2bq/QakmoOGg3EZqdiGZecVEhQc5uxSlPJ6Gg3Ib8Wf3N7R3biFKNQMaDsptxKdk06alF/27tnN2KUp5PA0H5TbiU7KJDAvEq4WebE+pxqbhoNxCfnEZe0/k6vmUlGoiGg7KLSQcOY3N6Mn2lGoqGg7KLcSnZCMCEbozWqkmoeGg3EL8kWz6dWlLu1Y+zi5FqWZBw0G5PJvNsC0lW4eUlGpCGg7K5e3PyCOvuEzDQakmpOGgXF68XvlNqSan4aBcXnxKNh39WxIW1NrZpSjVbGg4KJcXn5LN8LBARPTgN6WaioaDcmmZecWknCzQi/so1cQ0HJRL+3b3CUAv7qNUU9NwUC5rz/Fc/v75bmLCg4jUcFCqSWk4KJeUU1DKvUviCfDzYe5tkXqyPaWamLezC1DqXDabYdb72zieU8jymZfQua1eElSppqY9B+VSbDbD3z7dxfp9mTz120F6bINSTqLhoFxGRTC8t/kI94++iNsuDnN2SUo1WzWGg4h0F5F1IrJHRBJFZJbVHiEim0QkQUTiRCSm0jqzRSRZRPaJyNhK7VEistN6bI7oxHVlOTcYnhjbT49rUMqJatNzKAMeN8YMAEYCD4rIQODfwDPGmAjgf6zfsR6bDAwCxgGvi4iXta15wEygj3Ub57iXotxVWbmNP324Q4NBKRdSYzgYY44bY7Za9/OAPUAIYICKi/kGAGnW/YnAcmNMsTHmEJAMxIhIN6CdMWajMcYAi4HrHflilPspLivnoaXb+CA+lVlX9tFgUMpF1Gm2koiEA5HAZuAR4BsReRF7yIyyFgsBNlVaLdVqK7Xun9te3fPMxN7DICxMx5091cn8YmYtT2BDchb/M34gMy7r6eySlFKWWoeDiPgDHwKPGGNyReRZ4FFjzIci8jvgbeAqoLqvfeYC7VUbjVkALACIjo6udhnlnowxbDxwkqWxR/gm8QQ2Ay/ePIxJUaHOLk0pVUmtwkFEfLAHw3vGmI+s5mnALOv+B8Bb1v1UoHul1UOxDzmlWvfPbVfNQGm5jc93pPHG9wfZeyKPAD8fpo4M59aLu9O7c1tnl6eUOkeN4WDNKHob2GOMeanSQ2nAr4H1wBggyWpfBSwVkZeAYOw7nmONMeUikiciI7EPS90BvOaoF6Jc17q9GTz5yS6OnS6kbxd/Xpg0lN8OC6aVj1fNKyulnKI2PYdLganAThFJsNr+AtwDvCoi3kAR1j4CY0yiiKwAdmOf6fSgMabcWu9+YCHgB3xl3ZSHstkMc9cl8/Ka/fTr0pa37ohmTP/OtNBTYSjl8sQ+cch1RUdHm7i4OGeXoerodEEJT6zcwbe707khMoR/3jhEewpKNSERiTfGRNd3fT23knKotNOFvL3hEMtij1BcZuNv4wcy49JwnZ6qlJvRcFAOUVZu49W1Scz//gA2AxOGBXPfry+iX1fd2ayUO9JwUA2Wml3ArOUJxKdkc+PwEB69qi/d9XrPSrk1DQfVIJsOnmTm4jhsBl6dHMHEiGqPa1RKuRkNB1Vv6blFPPjeVjq29eXd6SPo0aGNs0tSSjmInrJb1UtZuY2Hl22joKScN26P0mBQysNoz0HVy6trk9h86BT/uXkYfbroTmelPI32HFSdrduXwdx1yfwuOpSb9JxISnkkDQdVJ4lpOTz03lb6d23HMxMGO7scpVQj0XBQtZaaXcCd724hwM+Hd6ePwK+lHvGslKfSfQ6qVnIKSpn+7hYKS8v58P5RdA1o5eySlFKNSHsOqkbGGP64cjspJ8+wYGo0fXUHtFIeT8NB1eijrcf4dnc6T4ztzyUXdXB2OUqpJqDhoC4o7XQhT69KJCY8SC/jqVQzouGgzstmMzyxcgflxvDizcPw0uswKNVsaDio83rzx4NsSM7ir9cNIKyDnkhPqeZEw0FVa0XcUf751V6uHdKVW2PCnF2OUqqJaTioKr7ceZw/f7iDy/t05OVbIvRCPUo1QxoO6hfW7c1g1vJtRIYF8sbUKHy99UA3pZojDQd11mfb05i5JI6+XdryzvQRtG6px0gq1VxpOCgAlsUe4eHl24jo3p6l94wkwM/H2SUppZxIvxo2c2XlNuasTWLOd8mM7teJebdF6TmTlFIaDq4qp6CUnw9ksfNYDjuP5VBWbhgc0o7BIQFcclEHOrdt+LmNjucUMmt5ArGHTjEpKpR/3DCElt7amVRKaTi4pB/2Z/LYigSy8kvwbiH06dKWll7Coo0plJTZaNvKm1cnRzCmf5d6P8e6vRk8uiKBkjIbL/1uGDcO1+syKKX+j4aDCyktt/Gfb/cz//sD9O3iz9xbhxPRvT2tfLzOPr47LZe/fLyTuxbF8dhVfXnwit60qMORyzabYe66ZF5es58BXdsx99ZIenXyb6yXpJRyUxoOLiK3qJS7F8URe+gUU2LC+J/xA6uM/ft4tWBY9/asvG8Usz/awX9W72fb0dM8M2EQ3YNqPoI5r6iUx1ds59vd6dwQGcI/bxxyNniUUqoyDQcXkJVfzLR3Ytl3Io+XbxnGDZEXHuLxa+nFy7dEMKx7e/799T6ufvl7Hhzdm3t+1avaD/uT+cUs+vkwizamkF9cxlO/Hcj0UeF6cJtS6rzEGOPsGi4oOjraxMXFObuMRnPsdCFT39pMWk4h826P4op+neu8/rOf7+arXScIatOSS3t35LLe9h3Wu6yd2T8kZVJcZuPqAV14aExvhoa2b5wXo5RyGSISb4yJrvf6Gg7OcyKniJvf+JnTBaW8M30EI8KD6r2tn5KzWBmfyobkLDLzis+29+rYhot7deCuy3rSu7PuW1CquWhoOOiwkpOcOlPC1Lc3cyq/hKX3jGRY9/YN2t6lvTtyae+OGGPYn57P6YISBgS3o10rPZhNKVV3Gg5OkFdUyvR3Y0k5VcCiO2MaHAyViQj9uuplPJVSDVPjEU8i0l1E1onIHhFJFJFZlR77vYjss9r/Xal9togkW4+NrdQeJSI7rcfmSDPcI5pbVMqd725hd1ou824brpfdVEq5pNr0HMqAx40xW0WkLRAvIquBLsBEYKgxplhEOgOIyEBgMjAICAbWiEhfY0w5MA+YCWwCvgTGAV85+kW5qqz8Yu54O5akjDxenRzJlQPqfxCbUko1phrDwRhzHDhu3c8TkT1ACHAP8Lwxpth6LMNaZSKw3Go/JCLJQIyIHAbaGWM2AojIYuB6XDgcCkvKWRp7hG1Hsjl6qoAjpwootxkCWvsQ4OdDdI8g7r68J6GBNR9jUHlW0pt3RDO6jrOSlFKqKdVpn4OIhAORwGbgBeByEXkOKAL+YIzZgj04NlVaLdVqK7Xun9vuckrLbayIO8qra5LIyCsmLKg1PTq05poh3fBpIeQUlnLyTAnvbU5hyaYUJgwLZkpMGJFh7fHx+uVIXdrpQt768RDLtxzBq4Ww5K6LGzQrSSmlmkKtw0FE/IEPgUeMMbki4g0EAiOBEcAKEekFVLcfwVygvbrnmol9+ImwsKa9ROXWI9k8sXIHyRn5RPUIZO6tw4npWf2H+fGcQt7+8RBLY4/w8bZjtGnpxcW9OtClXStyC0s5daaELYdPYYCJw4J5aExvPVWFUsot1CocRMQHezC8Z4z5yGpOBT4y9gMlYkXEBnS02rtXWj0USLPaQ6tpr8IYswBYAPbjHGr9ahqgqLScl1fv580fD9K1XSsWTI3i6oFdLngUcbcAP54cP5CHr+rDz8kn+Sk5i5+Ss9iRmkOAnzft/HyYekkP7rqsdkNPSinlKmoMB2tG0dvAHmPMS5Ue+gQYA6wXkb5ASyALWAUsFZGXsO+Q7gPEGmPKRSRPREZiH5a6A3jNkS+mvg5m5nPvkniSMvKZEhPGX67tT9s6HB/QrpUP4wZ3Zdzgro1YpVJKNZ3a9BwuBaYCO0UkwWr7C/AO8I6I7AJKgGlWLyJRRFYAu7HPdHrQmqkEcD+wEPDDviPa6Tuj1+5J55HlCfh4t2DRjBh+3beTs0tSSimna7anzygpszF3XTKvfZfEoOB2zL89Sod+lFIeQ0+fUQ8/JmXy1KpEDmae4cbhIfzjBj11tVJKVdaswiEzr5inP0vkix3HCe/QmoV3jtDjDZRSqhrNIhyMMXy+4zj/8+kuzpSU8/jVfZn56174emtvQSmlquPx4XCmuIwnVu7gi53HGda9Pf+5eSi9O+uJ6ZRS6kI8OhzSc4uYsXALe47n8sS4fsy8vBfeXjWea1AppZo9jw2HfSfyuPPdWE4XlvLWtGjG9NeT3CmlVG15ZDhsOXyKGQu34OfjxYp7L2FwSICzS1JKKbficeGwbm8G978XT3CAH0vuvpiQ9n7OLkkppdyOR4XDZ9vTePT9BPp1bcuiGTF09Pd1dklKKeWWPCYc4g6f4pH3E4gKC+St6dF67WSllGoAj5i6c+pMCb9fto3QQD8NBqWUcgC37znYbIbHVyRwMr+Ejx4YpcGglFIO4PY9hwU/HmTdvkz+Nn6AzkpSSikHcetw2Jmaw4vf7OO6Id24fWQPZ5ejlFIew23Doai0nMdWJNDR35d/3DjkgldsU0opVTduu8/hP9/uIykjn8UzYgjw0/0MSinlSG7Zc9h88CRvbTjE7SPD+JVeuU0ppRzO7cLhTHEZf1i5ne6BrZl9zQBnl6OUUh7J7YaVXvhmH6nZhbw/8xLa+Lpd+Uop5RbcqucQd/gUizYe5o6RPYjpGeTscpRSymO5TTgUlZbzxIc7CA7w44lx/Z1djlJKeTS3GZd5dW0SBzPPsHhGjA4nKaVUI3P5T9m8ojJ+98ZGYg+d4uaoUJ2dpJRSTcDlw+HwyTMEnSrgb+MHcvvIMGeXo5RSzYLLh0NooB/f//EKWnq7ze4RpZRyey7/iRvYuqUGg1JKNTH91FVKKVWFhoNSSqkqNByUUkpVoeGglFKqCg0HpZRSVWg4KKWUqkLDQSmlVBUaDkoppaoQY4yza7ggEckEUqp5qCOQVcPqAUBOEy2j9bhXPa5Yk9aj9Tiynh7GmPqfjM4Y45Y3IK4WyyxowmW0HjeqxxVr0nq0nsaupy43Tx9W+qwJl6kNradpnstR9Tjy+Tz1b6T1NM1zOfI9XSsuP6x0PiISZ4yJdnYdFbSeC3O1esD1atJ6LkzruTBH1+POPYcFzi7gHFrPhblaPeB6NWk9F6b1XJhD63HbnoNSSqnG4849B6WUUo1Ew0EppVQVLhMOItJdRNaJyB4RSRSRWVZ7kIisFpEk62eg1d7BWj5fROaes63nROSoiOQ7ux4RaS0iX4jIXms7z7vA3+drEdlubWe+iHg5s55K21wlIrvqWktj1CQi60Vkn4gkWLfOTq6npYgsEJH91nvpJmfVIyJtK/1dEkQkS0RecfLfZ4qI7BSRHdb7u6OT67nFqiVRRP5d11rqWc/VIhJv/R3iRWRMpW1FWe3JIjJHRKTGAhw5L7YhN6AbMNy63xbYDwwE/g382Wr/M/Av634b4DLgPmDuOdsaaW0v39n1AK2BK6z7LYEfgWuc/PdpZ/0U4ENgsjPrsR6/EVgK7HL2v5n12Hog2oXe088Az1r3WwAdnf1vVmm78cCvnPh/zBvIqPibWOs/7cR6OgBHgE7W74uAK5ugnkgg2Lo/GDhWaVuxwCXY/89/RS0+g+r9xm/sG/ApcDWwD+hW6Y+175zlpp/vjUsDwqEx6rEefxW4xxXqAXywz5++xZn1AP7ABuuNX+9wcHBN62lgODi4nqNAG1epp9JjfazaxFn1WO/jTKCH9eE3H5jpxHpGAGsq/T4VeL2p6rHaBTgJ+FrL7K302BTgjZqez2WGlSoTkXDsKbgZ6GKMOQ5g/axz995V6hGR9sBvgbXOrkdEvsH+bSsPWOnkev4O/AcoaEgdDq4J4F1r2ORvteqGN1I91vsG4O8islVEPhCRLs6q5xxTgPeN9anjjHqMMaXA/cBOIA37l4y3nVUPkAz0F5FwEfEGrge6N3E9NwHbjDHFQAiQWumxVKvtglwuHETEH/tQxyPGmFxPqcd6kywD5hhjDjq7HmPMWOzfKHyBMTUs3mj1iEgE0NsY83F9a3B0TZbbjDFDgMut21Qn1uMNhAI/GWOGAxuBF51YT2WTsb+v680B7yEf7OEQCQQDO4DZzqrHGJNt1fM+9mHkw0BZU9UjIoOAfwH3VjRVV2ZN23GpcLD+kT8E3jPGfGQ1p4tIN+vxbti/7bpjPQuAJGPMKy5SD8aYImAVMNGJ9VwCRInIYexDS31FZH196nFgTRhjjlk/87DvC4lxYj0nsfeqKgL0A2C4E+up2NYwwNsYE1+fWhxYTwSAMeaA1YNZAYxyYj0YYz4zxlxsjLkE+zBQUlPUIyKh2N8ndxhjDljNqdi/XFQIxd7DuiCXCQer2/42sMcY81Klh1YB06z707CPu7lVPSLyLPazKj7i7HpExL/SG8sbuBbY66x6jDHzjDHBxphw7Dv39htjRte1HkfWJCLeFbNdrP+c44E6z6Jy4N/IYN83NNpquhLY7ax6KplCA3oNDqznGDBQRCrOQHo1sMeJ9SDW7DZrJtEDwFuNXY81/PgFMNsY81PFwtbQU56IjLS2eUdtXoPDdm419Ib9g8Fg7xImWLdrse/5X4s9edcCQZXWOQycAvKxp+NAq/3f1u826+fTzqoHe0ob7G/Wiu3c7cR6ugBbrO0kAq9h//bntH+vSo+H07DZSo76G7XBPgOn4m/0KuDl5Pd0D+AHa1trgTBn/5sBB4H+zv73strvw/5/bAf2IO3g5HqWYQ/w3dRjNmB96gGeBM5UWjYB6Gw9Fo39C84BYC61mECgp89QSilVhcsMKymllHIdGg5KKaWq0HBQSilVhYaDUkqpKjQclFJKVaHhoFQlIlJunTIjUexnrn1MRC74/8Q6TcKtTVWjUk1Bw0GpXyo0xkQYYwZhP5jqWuCpGtYJBzQclEfR4xyUqkRE8o0x/pV+74X9oMGO2A9EW4L9IDmAh4wxP4vIJmAAcAj76ZnnAM9jP6LZF/hfY8wbTfYilHIADQelKjk3HKy2bKA/9jPY2owxRSLSB1hmjIkWkdHAH4wx463lZ2I/MvVZEfEFfgJuNsYcasrXolRDeDu7AKXcQMVZLX2AudaZZMuBvudZ/jfAUBGZZP0egP26BxoOym1oOCh1AdawUjn2M18+BaQDw7Dvrys632rA740x3zRJkUo1At0hrdR5WGf5nI/9Kl8Gew/guDHGhv36DhXX3s7DfhnHCt8A91tndEVE+opIG5RyI9pzUOqX/EQkAfsQUhn2HdAVp0t+HfhQRG4G1mE/AybYz5pZJiLbgYXYz+IaDmy1TpGcif1qYEq5Dd0hrZRSqgodVlJKKVWFhoNSSqkqNByUUkpVoeGglFKqCg0HpZRSVWg4KKWUqkLDQSmlVBX/HwfgHSMDbElgAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "houses.plot()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9-final" } }, "nbformat": 4, "nbformat_minor": 2 }