introduction-to-deep-learning/Intelligence Artificielle d.../gym/examples/scripts/sim_env

65 lines
2.2 KiB
Plaintext
Raw Normal View History

2023-08-21 15:09:08 +00:00
#!/usr/bin/env python
import gym
from gym import spaces, envs
import argparse
import numpy as np
import itertools
import time
parser = argparse.ArgumentParser()
parser.add_argument("env")
parser.add_argument("--mode", choices=["noop", "random", "static", "human"],
default="random")
parser.add_argument("--max_steps", type=int, default=0)
parser.add_argument("--fps",type=float)
parser.add_argument("--once", action="store_true")
parser.add_argument("--ignore_done", action="store_true")
args = parser.parse_args()
env = envs.make(args.env)
ac_space = env.action_space
fps = args.fps or env.metadata.get('video.frames_per_second') or 100
if args.max_steps == 0: args.max_steps = env.spec.tags['wrapper_config.TimeLimit.max_episode_steps']
while True:
env.reset()
env.render(mode='human')
print("Starting a new trajectory")
for t in range(args.max_steps) if args.max_steps else itertools.count():
done = False
if args.mode == "noop":
if isinstance(ac_space, spaces.Box):
a = np.zeros(ac_space.shape)
elif isinstance(ac_space, spaces.Discrete):
a = 0
else:
raise NotImplementedError("noop not implemented for class {}".format(type(ac_space)))
_, _, done, _ = env.step(a)
time.sleep(1.0/fps)
elif args.mode == "random":
a = ac_space.sample()
_, _, done, _ = env.step(a)
time.sleep(1.0/fps)
elif args.mode == "static":
time.sleep(1.0/fps)
elif args.mode == "human":
a = raw_input("type action from {0,...,%i} and press enter: "%(ac_space.n-1))
try:
a = int(a)
except ValueError:
print("WARNING: ignoring illegal action '{}'.".format(a))
a = 0
if a >= ac_space.n:
print("WARNING: ignoring illegal action {}.".format(a))
a = 0
_, _, done, _ = env.step(a)
env.render()
if done and not args.ignore_done: break
print("Done after {} steps".format(t+1))
if args.once:
break
else:
raw_input("Press enter to continue")