Update titles
This commit is contained in:
parent
d92d487ccf
commit
ff0f6cf253
|
@ -91,7 +91,7 @@ Plot_CDF <- function(lambda,n_sample,T,tau){
|
|||
return(Emp)
|
||||
}
|
||||
```
|
||||
### 2.1 Test of $\mathcal{H}_0: \lambda=\lambda_0$ against $\mathcal{H}_0: \lambda=\lambda_1$, where $\lambda_1 > \lambda_0$
|
||||
### 2.1. Test of $\mathcal{H}_0: \lambda=\lambda_0$ against $\mathcal{H}_0: \lambda=\lambda_1$, where $\lambda_1 > \lambda_0$
|
||||
In this part, we will test different values for $\lambda_0$ and $\lambda_1$, and compute the probability of occurrence of a certain scan statistic.
|
||||
|
||||
```{r}
|
||||
|
@ -226,7 +226,7 @@ ScanStatMC <- function(NbSeq, T, tau, Emp, pp0){
|
|||
```
|
||||
|
||||
## 3. Local score
|
||||
### Distribution of scores via Monte Carlo
|
||||
### 3.1. Distribution of scores via Monte Carlo
|
||||
```{r}
|
||||
ComputeE <- function(lambda0, lambda1){
|
||||
E = 1
|
||||
|
@ -305,7 +305,7 @@ mtext("Distribution des scores via la méthode théorique",side=1,line=4,col="re
|
|||
```
|
||||
|
||||
|
||||
### Local score calculation
|
||||
### 3.2. Local score calculation
|
||||
```{r}
|
||||
LocalScoreMC <- function(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0){
|
||||
E = ComputeE(lambda0, lambda1)
|
||||
|
|
Loading…
Reference in New Issue