Comparison_Lambda_Values
This commit is contained in:
		
							parent
							
								
									de2ada97d5
								
							
						
					
					
						commit
						f5a35a44ce
					
				@ -263,15 +263,36 @@ ScoreDistribEmpiric <- function(lambda0, lambda1, n_sample, T){
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```{r}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lambda0=5
 | 
				
			||||||
 | 
					lambda1=7
 | 
				
			||||||
 | 
					distrib_mc=ScoreDistribEmpiric(lambda0,lambda1,10000,T)
 | 
				
			||||||
 | 
					score_moyen=mean(distrib_mc[,1])
 | 
				
			||||||
 | 
					print(score_moyen)
 | 
				
			||||||
 | 
					score_max=max(distrib_mc[,1])
 | 
				
			||||||
 | 
					print(score_max)
 | 
				
			||||||
 | 
					score_min=min(distrib_mc[,1])
 | 
				
			||||||
 | 
					print(score_min)
 | 
				
			||||||
 | 
					amplitude=abs(score_max-score_min)
 | 
				
			||||||
 | 
					print(amplitude)
 | 
				
			||||||
 | 
					E=ComputeE(lambda0, lambda1)
 | 
				
			||||||
 | 
					print(E)
 | 
				
			||||||
 | 
					barplot(distrib_mc[,2])
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```{r}
 | 
					```{r}
 | 
				
			||||||
ScoreDistribElisa <- function(lambda0, lambda1, T){
 | 
					ScoreDistribElisa <- function(lambda0, lambda1, T){
 | 
				
			||||||
    E = ComputeE(lambda0, lambda1)
 | 
					    E = ComputeE(lambda0, lambda1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    score_max = floor(E*log(lambda1/lambda0))
 | 
					    score_max = floor(E*log(lambda1/lambda0))
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ## score_min compute
 | 
					    ## score_min compute
 | 
				
			||||||
    score_min_c = floor(E*log(lambda1/lambda0)+E*(lambda0-lambda1)*T)
 | 
					    score_min_c = floor(E*log(lambda1/lambda0)+E*(lambda0-lambda1)*T)
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    l = seq(score_min_c,score_max,1)
 | 
					    l = seq(score_min_c,score_max,1)
 | 
				
			||||||
    borne_inf = (l-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
					    borne_inf = (l-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
				
			||||||
    borne_sup = (l+1-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
					    borne_sup = (l+1-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
				
			||||||
@ -289,11 +310,9 @@ distrib_score_mc=ScoreDistribEmpiric(2,3,10000,T)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
distrib_score_theo=ScoreDistribElisa(2,3,T)
 | 
					distrib_score_theo=ScoreDistribElisa(2,3,T)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					distrib_score_mc
 | 
				
			||||||
 | 
					distrib_score_theo
 | 
				
			||||||
 | 
					
 | 
				
			||||||
length(distrib_score_mc[,2])
 | 
					 | 
				
			||||||
length(distrib_score_theo[,2])
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#diff_distrib_score=abs(distrib_score_mc[,2]-distrib_score_theo[,2])
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
#par(mfrow = c(1,2))
 | 
					#par(mfrow = c(1,2))
 | 
				
			||||||
barplot(distrib_score_mc[,2],col="blue",axes=F)
 | 
					barplot(distrib_score_mc[,2],col="blue",axes=F)
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user