Update LocaScoreMC and sub-functions
This commit is contained in:
parent
8b192f36eb
commit
e93e8ed57c
|
@ -184,8 +184,8 @@ for (i in 1:NbSeqH0){
|
|||
#cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
|
||||
#print(length(ppi))
|
||||
}
|
||||
ScS_H0=data.frame(num=1:NbSeqH0, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan)
|
||||
sum(ScS_H0$class[which(ScS_H0$class==TRUE)])/NbSeqH0
|
||||
#ScS_H0=data.frame(num=1:NbSeqH0, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan)
|
||||
#sum(ScS_H0$class[which(ScS_H0$class==TRUE)])/NbSeqH0
|
||||
```
|
||||
|
||||
```{r}
|
||||
|
@ -255,10 +255,19 @@ ComputeE <- function(lambda0, lambda1){
|
|||
}
|
||||
```
|
||||
|
||||
for (i in 2:(n_sample)){
|
||||
pp=PoissonProcess(lambda,T)
|
||||
scan=rbind(scan,ScanStat(pp,T, tau)[2])
|
||||
index=rbind(index,ScanStat(pp,T, tau)[1])
|
||||
}
|
||||
|
||||
```{r}
|
||||
ScoreDistrib <- function(lambda0, lambda1, T){
|
||||
ScoreDistrib <- function(lambda0, lambda1, NbSeq, T){
|
||||
E = ComputeE(lambda0, lambda1)
|
||||
|
||||
for (i in 1:NbSeq) {
|
||||
selected
|
||||
}
|
||||
ppH0 = PoissonProcess(lambda0,T)
|
||||
n1 = length(ppH0)
|
||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
||||
|
@ -280,43 +289,53 @@ ScoreDistrib <- function(lambda0, lambda1, T){
|
|||
|
||||
### Local score calculation
|
||||
```{r}
|
||||
LocaScoreMC <- function(lambda0, lambda1, E, T){
|
||||
LocaScoreMC <- function(lambda0, lambda1, NbSeq, tbe0, T){
|
||||
E = ComputeE(lambda0, lambda1)
|
||||
|
||||
pvalue = c()
|
||||
X = c()
|
||||
|
||||
Score = ScoreDistrib(lambda0, lambda1, T)
|
||||
Score = ScoreDistrib(lambda0, lambda1, NbSeq, T)
|
||||
xp = Score$X
|
||||
P_X = Score$P_X
|
||||
|
||||
NbSeqH0 = length(tbe0)
|
||||
|
||||
min_X = min(xp)
|
||||
max_X = max(xp)
|
||||
|
||||
for (i in 1:NbSeqH0){
|
||||
for (i in 1:NbSeq){
|
||||
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
||||
X = c(X,x)
|
||||
LS = localScoreC(x)$localScore[1]
|
||||
|
||||
daudin_result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(x), sequence_min = min_X, sequence_max = max_X)
|
||||
options(warn = -1) # Disable warnings print
|
||||
|
||||
pvalue = c(pvalue, daudin_result)
|
||||
}
|
||||
LS_H0=data.frame(num=1:NbSeqH0, pvalue_scan=pvalue, class=(pvalue<0.05))
|
||||
print(NbSeqH0)
|
||||
LS_H0=data.frame(num=1:NbSeq, pvalue_scan=pvalue, class=(pvalue<0.05))
|
||||
return(LS_H0)
|
||||
}
|
||||
```
|
||||
|
||||
### Experience plan
|
||||
```{r}
|
||||
E = 10
|
||||
for (T in 10**(2:5)){
|
||||
for (lambda0 in c(1, 2, 10)){
|
||||
for (lambda1 in c(4, 20, 100, 1000)){
|
||||
if (lambda0 < lambda1){
|
||||
cat("T = ", T, ", lambda0 = ", lambda0, ", lambda1 = ", lambda1, "\n", sep = "")
|
||||
LS_H0 = LocaScoreMC(lambda0, lambda1, E, T)
|
||||
print(summary(LS_H0))
|
||||
cat("---\n")
|
||||
}
|
||||
NbSeq = 10**3
|
||||
for (lambda0 in (1:5)){
|
||||
for (lambda1 in c(2,4,6)){
|
||||
if (lambda0 < lambda1){
|
||||
cat("Nb = ", NbSeq, ", lambda0 = ", lambda0, ", lambda1 = ", lambda1, "\n", sep = "")
|
||||
|
||||
ppH0 = PoissonProcess(lambda0,T)
|
||||
n1 = length(ppH0)
|
||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
||||
|
||||
LS_H0 = LocaScoreMC(lambda0, lambda1, NbSeq, tbe0, T)
|
||||
|
||||
print(summary(LS_H0))
|
||||
cat("---\n")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue