Merge branch 'main' of https://github.com/Paul-Corbalan/Scan-Statistics-Project-4Y-INSA
This commit is contained in:
commit
dcec5bc0a7
|
@ -273,6 +273,7 @@ ScoreDistribEmpiric <- function(lambda0, lambda1, n_sample, T){
|
||||||
```
|
```
|
||||||
|
|
||||||
```{r}
|
```{r}
|
||||||
|
|
||||||
lambda0=5
|
lambda0=5
|
||||||
lambda1=7
|
lambda1=7
|
||||||
distrib_mc=ScoreDistribEmpiric(lambda0,lambda1,10000,T)
|
distrib_mc=ScoreDistribEmpiric(lambda0,lambda1,10000,T)
|
||||||
|
@ -289,15 +290,18 @@ print(E)
|
||||||
barplot(distrib_mc[,2])
|
barplot(distrib_mc[,2])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
```{r}
|
```{r}
|
||||||
ScoreDistribTheo <- function(lambda0, lambda1, T){
|
ScoreDistribTheo <- function(lambda0, lambda1, T){
|
||||||
E = ComputeE(lambda0, lambda1)
|
E = ComputeE(lambda0, lambda1)
|
||||||
|
|
||||||
score_max = floor(E*log(lambda1/lambda0))
|
score_max = floor(E*log(lambda1/lambda0))
|
||||||
|
|
||||||
|
|
||||||
## score_min compute
|
## score_min compute
|
||||||
score_min_c = floor(E*log(lambda1/lambda0)+E*(lambda0-lambda1)*T)
|
score_min_c = floor(E*log(lambda1/lambda0)+E*(lambda0-lambda1)*T)
|
||||||
|
|
||||||
|
|
||||||
l = seq(score_min_c,score_max,1)
|
l = seq(score_min_c,score_max,1)
|
||||||
borne_inf = (l-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
|
borne_inf = (l-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
|
||||||
borne_sup = (l+1-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
|
borne_sup = (l+1-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
|
||||||
|
@ -311,6 +315,16 @@ ScoreDistribTheo <- function(lambda0, lambda1, T){
|
||||||
```
|
```
|
||||||
|
|
||||||
```{r}
|
```{r}
|
||||||
|
|
||||||
|
T=10
|
||||||
|
distrib_score_mc=ScoreDistribEmpiric(2,3,10000,T)
|
||||||
|
|
||||||
|
distrib_score_theo=ScoreDistribElisa(2,3,T)
|
||||||
|
|
||||||
|
distrib_score_mc
|
||||||
|
distrib_score_theo
|
||||||
|
|
||||||
|
|
||||||
distrib_score_mc = ScoreDistribEmpiric(2,3,10000,T)
|
distrib_score_mc = ScoreDistribEmpiric(2,3,10000,T)
|
||||||
distrib_score_theo = ScoreDistribTheo(2,3,T)
|
distrib_score_theo = ScoreDistribTheo(2,3,T)
|
||||||
|
|
||||||
|
@ -320,6 +334,7 @@ plot_graph_distrib_score <- function(distrib_score_theo, distrib_score_mc){
|
||||||
|
|
||||||
#diff_distrib_score=abs(distrib_score_mc[,2]-distrib_score_theo[,2])
|
#diff_distrib_score=abs(distrib_score_mc[,2]-distrib_score_theo[,2])
|
||||||
|
|
||||||
|
|
||||||
#par(mfrow = c(1,2))
|
#par(mfrow = c(1,2))
|
||||||
barplot(distrib_score_mc[,2],col="blue",axes=F)
|
barplot(distrib_score_mc[,2],col="blue",axes=F)
|
||||||
mtext("Distribution of scores via Monte Carlo",side=1,line=2.5,col="blue")
|
mtext("Distribution of scores via Monte Carlo",side=1,line=2.5,col="blue")
|
||||||
|
@ -329,10 +344,10 @@ plot_graph_distrib_score <- function(distrib_score_theo, distrib_score_mc){
|
||||||
mtext("Distribution of scores using the theoretical method",side=1,line=4,col="red")
|
mtext("Distribution of scores using the theoretical method",side=1,line=4,col="red")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
plot_graph_distrib_score(distrib_score_theo, distrib_score_mc)
|
plot_graph_distrib_score(distrib_score_theo, distrib_score_mc)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
### 3.2. Local score calculation
|
### 3.2. Local score calculation
|
||||||
```{r}
|
```{r}
|
||||||
LocalScoreMC <- function(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0){
|
LocalScoreMC <- function(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0){
|
||||||
|
|
|
@ -505,6 +505,7 @@ x.verif=seq(range(x)[1],range(x)[2],1)
|
||||||
#dist.theo.scores=lambda0*exp(-lambda0*(A*x.verif-B))
|
#dist.theo.scores=lambda0*exp(-lambda0*(A*x.verif-B))
|
||||||
#dist.theo.scores
|
#dist.theo.scores
|
||||||
dist.emp.scores
|
dist.emp.scores
|
||||||
|
barplot(dist.emp.scores)
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue