Merge branch 'main' of https://github.com/Paul-Corbalan/Scan-Statistics-Project-4Y-INSA
This commit is contained in:
commit
cfc4097a1a
|
@ -184,8 +184,8 @@ for (i in 1:NbSeqH0){
|
||||||
#cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
|
#cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
|
||||||
#print(length(ppi))
|
#print(length(ppi))
|
||||||
}
|
}
|
||||||
ScS_H0=data.frame(num=1:NbSeqH0, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan)
|
#ScS_H0=data.frame(num=1:NbSeqH0, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan)
|
||||||
sum(ScS_H0$class[which(ScS_H0$class==TRUE)])/NbSeqH0
|
#sum(ScS_H0$class[which(ScS_H0$class==TRUE)])/NbSeqH0
|
||||||
```
|
```
|
||||||
|
|
||||||
```{r}
|
```{r}
|
||||||
|
@ -255,10 +255,19 @@ ComputeE <- function(lambda0, lambda1){
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
for (i in 2:(n_sample)){
|
||||||
|
pp=PoissonProcess(lambda,T)
|
||||||
|
scan=rbind(scan,ScanStat(pp,T, tau)[2])
|
||||||
|
index=rbind(index,ScanStat(pp,T, tau)[1])
|
||||||
|
}
|
||||||
|
|
||||||
```{r}
|
```{r}
|
||||||
ScoreDistrib <- function(lambda0, lambda1, T){
|
ScoreDistrib <- function(lambda0, lambda1, NbSeq, T){
|
||||||
E = ComputeE(lambda0, lambda1)
|
E = ComputeE(lambda0, lambda1)
|
||||||
|
|
||||||
|
for (i in 1:NbSeq) {
|
||||||
|
selected
|
||||||
|
}
|
||||||
ppH0 = PoissonProcess(lambda0,T)
|
ppH0 = PoissonProcess(lambda0,T)
|
||||||
n1 = length(ppH0)
|
n1 = length(ppH0)
|
||||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
||||||
|
@ -280,43 +289,60 @@ ScoreDistrib <- function(lambda0, lambda1, T){
|
||||||
|
|
||||||
### Local score calculation
|
### Local score calculation
|
||||||
```{r}
|
```{r}
|
||||||
LocaScoreMC <- function(lambda0, lambda1, E, T){
|
LocaScoreMC <- function(lambda0, lambda1, NbSeq, tbe0, T){
|
||||||
|
E = ComputeE(lambda0, lambda1)
|
||||||
|
|
||||||
pvalue = c()
|
pvalue = c()
|
||||||
X = c()
|
X = c()
|
||||||
|
|
||||||
Score = ScoreDistrib(lambda0, lambda1, T)
|
Score = ScoreDistrib(lambda0, lambda1, NbSeq, T)
|
||||||
xp = Score$X
|
xp = Score$X
|
||||||
P_X = Score$P_X
|
P_X = Score$P_X
|
||||||
|
|
||||||
min_X = min(xp)
|
min_X = min(xp)
|
||||||
max_X = max(xp)
|
max_X = max(xp)
|
||||||
|
|
||||||
for (i in 1:NbSeqH0){
|
for (i in 1:NbSeq){
|
||||||
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
||||||
|
#print(range(x))
|
||||||
|
print(length(tbe0[[i]]))
|
||||||
|
if (min(x)==Inf){
|
||||||
|
print(tbe0[[i]])
|
||||||
|
}
|
||||||
X = c(X,x)
|
X = c(X,x)
|
||||||
LS = localScoreC(x)$localScore[1]
|
LS = localScoreC(x)$localScore[1]
|
||||||
|
|
||||||
daudin_result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(x), sequence_min = min_X, sequence_max = max_X)
|
daudin_result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(x), sequence_min = min_X, sequence_max = max_X)
|
||||||
|
options(warn = -1) # Disable warnings print
|
||||||
|
|
||||||
pvalue = c(pvalue, daudin_result)
|
pvalue = c(pvalue, daudin_result)
|
||||||
}
|
}
|
||||||
LS_H0=data.frame(num=1:NbSeqH0, pvalue_scan=pvalue, class=(pvalue<0.05))
|
print(NbSeqH0)
|
||||||
|
LS_H0=data.frame(num=1:NbSeq, pvalue_scan=pvalue, class=(pvalue<0.05))
|
||||||
return(LS_H0)
|
return(LS_H0)
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
### Experience plan
|
### Experience plan
|
||||||
```{r}
|
```{r}
|
||||||
E = 10
|
NbSeq = 10**3
|
||||||
for (T in 10**(2:5)){
|
for (lambda0 in (1:5)){
|
||||||
for (lambda0 in c(1, 2, 10)){
|
for (lambda1 in c(2,4,6)){
|
||||||
for (lambda1 in c(4, 20, 100, 1000)){
|
if (lambda0 < lambda1){
|
||||||
if (lambda0 < lambda1){
|
cat("Nb = ", NbSeq, ", lambda0 = ", lambda0, ", lambda1 = ", lambda1, "\n", sep = "")
|
||||||
cat("T = ", T, ", lambda0 = ", lambda0, ", lambda1 = ", lambda1, "\n", sep = "")
|
|
||||||
LS_H0 = LocaScoreMC(lambda0, lambda1, E, T)
|
tbe0=vector("list",length=NbSeq)
|
||||||
print(summary(LS_H0))
|
for (i in (1:NbSeq)) {
|
||||||
cat("---\n")
|
ppi = PoissonProcess(lambda0,T)
|
||||||
|
ni=length(ppi)
|
||||||
|
tbei=ppi[2:ni]-ppi[1:ni-1]
|
||||||
|
tbe0[[i]]=tbei
|
||||||
}
|
}
|
||||||
|
|
||||||
|
LS_H0 = LocaScoreMC(lambda0, lambda1, NbSeq, tbe0, T)
|
||||||
|
|
||||||
|
print(summary(LS_H0))
|
||||||
|
cat("---\n")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue