Update Dataset_study.rmd
Update_Automatic_Save_FileProba
This commit is contained in:
		
							parent
							
								
									fd3ab9ac2e
								
							
						
					
					
						commit
						aef2dfce41
					
				@ -337,9 +337,19 @@ p
 | 
			
		||||
 | 
			
		||||
library(stringr)
 | 
			
		||||
 | 
			
		||||
E=10
 | 
			
		||||
lambda0=1
 | 
			
		||||
lambda1=2
 | 
			
		||||
# Effacement des objets de l'environnement de travail
 | 
			
		||||
rm(list=ls())
 | 
			
		||||
 | 
			
		||||
# Chgt du nbr de chiffres après la virgule
 | 
			
		||||
options("digits" = 15)
 | 
			
		||||
 | 
			
		||||
# Chemin du dossier à adapter
 | 
			
		||||
workpath = "."
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
E=1
 | 
			
		||||
lambda0=0.2
 | 
			
		||||
lambda1=0.5
 | 
			
		||||
max=0 
 | 
			
		||||
 | 
			
		||||
while (exp(-lambda0*max) > 10^(-9)){
 | 
			
		||||
@ -356,7 +366,7 @@ head(x)
 | 
			
		||||
range(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
s=seq(-15,6,0.1)
 | 
			
		||||
s=seq(min(x),max(x),0.1)
 | 
			
		||||
##tronquer la queue des x (x négatifs)
 | 
			
		||||
A=1/(lambda0-lambda1)
 | 
			
		||||
B=A*log(lambda1/lambda0)
 | 
			
		||||
@ -365,12 +375,29 @@ proba.s = proba.s/sum(proba.s)
 | 
			
		||||
barplot(proba.s)
 | 
			
		||||
 | 
			
		||||
# Troncage à un score minimal
 | 
			
		||||
minXk = as.numeric(x[max(which(proba.s<(probaseuilmin)))]) # On définit la classe pour proba < probaseuilmin
 | 
			
		||||
names(proba.s) = as.character(x)
 | 
			
		||||
minXk = as.numeric(s[max(which(proba.s<(probaseuilmin)))]) # On définit la classe pour proba < probaseuilmin
 | 
			
		||||
names(proba.s) = as.character(s)
 | 
			
		||||
proba.s[as.character(minXk)] = sum(proba.s[which(proba.s<probaseuilmin)]) # probabilité de la classe SCORE < minXk
 | 
			
		||||
proba.s = proba.s[which(x>=minXk)] # On ne garde que les scores supérieurs à minXk
 | 
			
		||||
score = s
 | 
			
		||||
score=score[which(score>=minXk)]
 | 
			
		||||
proba.s = proba.s[which(s>=minXk)] # On ne garde que les scores supérieurs à minXk
 | 
			
		||||
subtitle = paste("lambda0=",lambda0,";lambda1=",lambda1,";E=",E,sep="")
 | 
			
		||||
barplot(proba.s, col="steelblue",xlab="Score",ylab="Probabilité", main = paste("Probabilité d'apparition de chaque score\nLoi géométrique : ",subtitle,sep=""))
 | 
			
		||||
print(score)
 | 
			
		||||
 | 
			
		||||
min(score)
 | 
			
		||||
max(score)
 | 
			
		||||
mean(score)
 | 
			
		||||
 | 
			
		||||
# Enregistrement du fichier
 | 
			
		||||
fichier_proba = paste(workpath,"/LLR_Theorique_lambda0",gsub('\\.','',as.character(lambda0)),"_lambda1",gsub('\\.','',as.character(lambda1)),"_E",E,"_CL.txt",sep="")
 | 
			
		||||
write.table(proba.s, file = fichier_proba)
 | 
			
		||||
 | 
			
		||||
# Lecture fichier
 | 
			
		||||
#prob.X = read.table(fichier_proba)
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
```{r}
 | 
			
		||||
 | 
			
		||||
barplot(proba.s)
 | 
			
		||||
##trouver 1/lambda en fonction intervalle seq
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user