Change lambda lists in list_of_lambda
This commit is contained in:
parent
40f1d8cba1
commit
8b1fbfda02
|
@ -84,6 +84,7 @@ EmpDistrib <- function(lambda, n_sample,T,tau){
|
||||||
scan=rbind(scan,ScanStat(pp,T, tau)[2])
|
scan=rbind(scan,ScanStat(pp,T, tau)[2])
|
||||||
index=rbind(index,ScanStat(pp,T, tau)[1])
|
index=rbind(index,ScanStat(pp,T, tau)[1])
|
||||||
}
|
}
|
||||||
|
scan=unlist(scan)
|
||||||
min_scan=min(scan)-1
|
min_scan=min(scan)-1
|
||||||
max_scan=max(scan)
|
max_scan=max(scan)
|
||||||
table1=table(factor(scan, levels = min_scan:max_scan))
|
table1=table(factor(scan, levels = min_scan:max_scan))
|
||||||
|
@ -206,7 +207,7 @@ for (i in 1:NbSeqH1){
|
||||||
pvalue=c(pvalue,result[2])
|
pvalue=c(pvalue,result[2])
|
||||||
index_scan=c(index_scan,result[3])
|
index_scan=c(index_scan,result[3])
|
||||||
}
|
}
|
||||||
ScS_H1 = data.frame(num=1:NbSeqH1, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05)*1, begin_scan=index_scan)
|
ScS_H1 = data.frame(num=1:NbSeqH1, scan_stat=scan, pvalue_scan=pvalue, class=as.numeric(pvalue<0.05), begin_scan=index_scan)
|
||||||
ScS_H1
|
ScS_H1
|
||||||
sum(ScS_H1$class[which(ScS_H1$class=='1')])/NbSeqH1
|
sum(ScS_H1$class[which(ScS_H1$class=='1')])/NbSeqH1
|
||||||
|
|
||||||
|
@ -227,7 +228,7 @@ ScanStatMC <- function(NbSeq, T, tau, Emp, pp0){
|
||||||
index_scan=c(index_scan,result[3])
|
index_scan=c(index_scan,result[3])
|
||||||
}
|
}
|
||||||
|
|
||||||
ScS_H0=data.frame(num=(1:NbSeq), scan_stat=scan, pvalue_scan=pvalue,class=c(pvalue<0.05))
|
ScS_H0=data.frame(num=(1:NbSeq), scan_stat=scan, pvalue_scan=pvalue,class=as.numeric(pvalue<0.05))
|
||||||
return(ScS_H0)
|
return(ScS_H0)
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
@ -361,7 +362,6 @@ LocalScoreMC <- function(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0){
|
||||||
|
|
||||||
for (i in 1:NbSeq){
|
for (i in 1:NbSeq){
|
||||||
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
||||||
X = c(X,x)
|
|
||||||
LS = localScoreC(x)$localScore[1]
|
LS = localScoreC(x)$localScore[1]
|
||||||
|
|
||||||
daudin_result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(x), sequence_min = min_X, sequence_max = max_X)
|
daudin_result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(x), sequence_min = min_X, sequence_max = max_X)
|
||||||
|
@ -379,15 +379,23 @@ LocalScoreMC <- function(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0){
|
||||||
NbSeq = 10**2
|
NbSeq = 10**2
|
||||||
T = 10
|
T = 10
|
||||||
|
|
||||||
list_of_lambda0 = c(2)
|
list_of_lambda = list()
|
||||||
list_of_lambda1 = c(3)
|
list_of_lambda[[1]] = c(1, 3)
|
||||||
|
list_of_lambda[[2]] = c(1, 4)
|
||||||
|
list_of_lambda[[3]] = c(1, 5)
|
||||||
|
list_of_lambda[[4]] = c(2, 4)
|
||||||
|
list_of_lambda[[5]] = c(2, 5)
|
||||||
|
list_of_lambda[[6]] = c(2, 6)
|
||||||
|
list_of_lambda[[7]] = c(4, 5)
|
||||||
|
list_of_lambda[[8]] = c(4, 8)
|
||||||
|
list_of_lambda[[9]] = c(4, 10)
|
||||||
|
|
||||||
for (lambda0 in list_of_lambda0){
|
for (Lambda in list_of_lambda){
|
||||||
|
lambda0 = Lambda[1]
|
||||||
|
lambda1 = Lambda[2]
|
||||||
Sensitivity = c()
|
Sensitivity = c()
|
||||||
Specificity = c()
|
Specificity = c()
|
||||||
accepted_lambda = c()
|
accepted_lambda = c()
|
||||||
|
|
||||||
for (lambda1 in list_of_lambda1){
|
|
||||||
if (lambda0 < lambda1){
|
if (lambda0 < lambda1){
|
||||||
|
|
||||||
accepted_lambda = c(accepted_lambda,lambda1)
|
accepted_lambda = c(accepted_lambda,lambda1)
|
||||||
|
@ -461,7 +469,6 @@ for (lambda0 in list_of_lambda0){
|
||||||
cat("---\n")
|
cat("---\n")
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
titleSens=TeX(paste(r'(Sensitivity for $\lambda_0=$)', lambda0))
|
titleSens=TeX(paste(r'(Sensitivity for $\lambda_0=$)', lambda0))
|
||||||
plot(x=accepted_lambda,y=Sensitivity, type='l', main = titleSens)
|
plot(x=accepted_lambda,y=Sensitivity, type='l', main = titleSens)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue