Integration of tau in compare and PValue debug
This commit is contained in:
parent
4673fb8fa7
commit
864fd506a1
|
@ -12,6 +12,7 @@ library("latex2exp")
|
||||||
library("Rcpp")
|
library("Rcpp")
|
||||||
library("caret")
|
library("caret")
|
||||||
library("ROCR")
|
library("ROCR")
|
||||||
|
library("pROC")
|
||||||
```
|
```
|
||||||
|
|
||||||
## 1. Proposition for simulations under $\mathcal{H}_1$
|
## 1. Proposition for simulations under $\mathcal{H}_1$
|
||||||
|
@ -120,16 +121,17 @@ CDF=Plot_CDF(lambda0,n_sample,T,tau)
|
||||||
Compute $p$-value for scan statistic of `ppH1` with `Emp`:
|
Compute $p$-value for scan statistic of `ppH1` with `Emp`:
|
||||||
```{r}
|
```{r}
|
||||||
PValue <- function(Emp,ppH, T, tau){
|
PValue <- function(Emp,ppH, T, tau){
|
||||||
scanH1=ScanStat(ppH,T,tau)[2]
|
SS = ScanStat(ppH,T,tau)
|
||||||
index_scanH1=ScanStat(ppH,T,tau)[1]
|
scanH = SS[2]
|
||||||
|
index_scanH = SS[1]
|
||||||
index = Emp$index_scan
|
index = Emp$index_scan
|
||||||
n=length(index)
|
n=length(index)
|
||||||
if (scanH1< min(Emp$index_scan)){
|
if (scanH< min(Emp$index_scan)){
|
||||||
return (c(scanH1,1,index_scanH1))
|
return (c(scanH,1,index_scanH))
|
||||||
} else{
|
} else{
|
||||||
if(min(Emp$index_scan)<scanH1 && scanH1<=max(Emp$index_scan)){
|
if(min(Emp$index_scan)<scanH && scanH<=max(Emp$index_scan)){
|
||||||
return(c(scanH1,1-Emp$cdf[scanH1-min(Emp$index_scan)+1],index_scanH1))
|
return(c(scanH,1-Emp$cdf[scanH-min(Emp$index_scan)],index_scanH))
|
||||||
} else{return (c(scanH1,0,index_scanH1))}}
|
} else{return (c(scanH,0,index_scanH))}}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -396,7 +398,7 @@ CompareMethods <- function(lambda0, lambda1, NbSeq, T, tau){
|
||||||
tbe0[[i]] = tbei
|
tbe0[[i]] = tbei
|
||||||
|
|
||||||
#Simulation for sequences under H1
|
#Simulation for sequences under H1
|
||||||
ppj1 = SimulationH1(lambda0, lambda1, T, tau)
|
ppj1 = SimulationH1(lambda0, lambda1, T, 3)
|
||||||
nj = length(ppj1)
|
nj = length(ppj1)
|
||||||
pp1[[i]] = ppj1
|
pp1[[i]] = ppj1
|
||||||
tbej = ppj1[2:nj]-ppj1[1:nj-1]
|
tbej = ppj1[2:nj]-ppj1[1:nj-1]
|
||||||
|
@ -404,13 +406,13 @@ CompareMethods <- function(lambda0, lambda1, NbSeq, T, tau){
|
||||||
}
|
}
|
||||||
|
|
||||||
#cat("- Empiric version:\n")
|
#cat("- Empiric version:\n")
|
||||||
Score = ScoreDistribEmpiric(lambda0, lambda1, NbSeq, T)
|
Score = ScoreDistribEmpiric(lambda0, lambda1, 10**4, T)
|
||||||
LS_H0 = LocalScoreMC(lambda0, lambda1, NbSeq, T, Score$Score_X, Score$P_X, tbe0)
|
LS_H0 = LocalScoreMC(lambda0, lambda1, NbSeq, T, Score$Score_X, Score$P_X, tbe0)
|
||||||
LS_H1 = LocalScoreMC(lambda0, lambda1, NbSeq, T, Score$Score_X, Score$P_X, tbe1)
|
LS_H1 = LocalScoreMC(lambda0, lambda1, NbSeq, T, Score$Score_X, Score$P_X, tbe1)
|
||||||
LS_obtained = c(LS_H0$class, LS_H1$class)
|
LS_obtained = c(LS_H0$class, LS_H1$class)
|
||||||
options(warn = -1)
|
options(warn = -1)
|
||||||
|
|
||||||
Emp = EmpDistrib(lambda0,n_sample,T,tau)
|
Emp = EmpDistrib(lambda0,10**4,T,tau)
|
||||||
SS_H0 = ScanStatMC(NbSeq, T, tau, Emp, pp0)
|
SS_H0 = ScanStatMC(NbSeq, T, tau, Emp, pp0)
|
||||||
SS_H1 = ScanStatMC(NbSeq, T, tau, Emp, pp1)
|
SS_H1 = ScanStatMC(NbSeq, T, tau, Emp, pp1)
|
||||||
SS_obtained = c(SS_H0$class, SS_H1$class)
|
SS_obtained = c(SS_H0$class, SS_H1$class)
|
||||||
|
@ -420,24 +422,27 @@ CompareMethods <- function(lambda0, lambda1, NbSeq, T, tau){
|
||||||
theoretical_results_SS = c(rep(0,length(SS_H0$num)), rep(1,length(SS_H1$num)))
|
theoretical_results_SS = c(rep(0,length(SS_H0$num)), rep(1,length(SS_H1$num)))
|
||||||
print(confusionMatrix(as.factor(SS_obtained), as.factor(theoretical_results_SS),
|
print(confusionMatrix(as.factor(SS_obtained), as.factor(theoretical_results_SS),
|
||||||
dnn = c("Prediction", "Reference"))$table)
|
dnn = c("Prediction", "Reference"))$table)
|
||||||
|
roc_SS = roc(theoretical_results_SS, SS_obtained)
|
||||||
|
areaSS = auc(roc_SS)
|
||||||
|
cat("Area under the ROC curve for SS = ", areaSS, "\n")
|
||||||
|
|
||||||
cat("--- Confusion matrix for local score method --- \n")
|
cat("--- Confusion matrix for local score method --- \n")
|
||||||
theoretical_results_LS = c(rep(0,length(LS_H0$num)), rep(1,length(LS_H1$num)))
|
theoretical_results_LS = c(rep(0,length(LS_H0$num)), rep(1,length(LS_H1$num)))
|
||||||
print(confusionMatrix(as.factor(LS_obtained), as.factor(theoretical_results_LS),
|
print(confusionMatrix(as.factor(LS_obtained), as.factor(theoretical_results_LS),
|
||||||
dnn = c("Prediction", "Reference"))$table)
|
dnn = c("Prediction", "Reference"))$table)
|
||||||
|
|
||||||
#cat("--- Coube ROC associé")
|
|
||||||
title_ROC = TeX(paste(r'(ROC curve for $H_0: \lambda_0=$)', lambda0,
|
title_ROC = TeX(paste(r'(ROC curve for $H_0: \lambda_0=$)', lambda0,
|
||||||
r'(against $H_1: \lambda_0=$)', lambda1))
|
r'(against $H_1: \lambda_0=$)', lambda1))
|
||||||
pred.SS = prediction(theoretical_results_SS,SS_obtained)
|
pred.SS = prediction(theoretical_results_SS,SS_obtained)
|
||||||
pred.LS = prediction(theoretical_results_LS,LS_obtained)
|
pred.LS = prediction(theoretical_results_LS,LS_obtained)
|
||||||
perf.SS = performance(pred.SS,"tpr", "fpr")
|
perf.SS = performance(pred.SS,"tpr", "fpr")
|
||||||
perf.LS = performance(pred.LS,"tpr", "fpr")
|
perf.LS = performance(pred.LS,"tpr", "fpr")
|
||||||
#plot(perf.SS, lty=1, col="coral")
|
|
||||||
par(new=T)
|
par(new=T)
|
||||||
#plot(perf.LS, lty=2, col="coral", main=title_ROC)
|
roc_LS = roc(theoretical_results_LS, LS_obtained)
|
||||||
|
areaLS = auc(roc_LS)
|
||||||
|
cat("Area under the ROC curve for LS = ", areaLS, "\n")
|
||||||
cat("-----------------------------------\n")
|
cat("-----------------------------------\n")
|
||||||
|
options(warn = -1)
|
||||||
|
|
||||||
result <- c('performance.SS'= perf.SS,'performance.LS'= perf.LS)
|
result <- c('performance.SS'= perf.SS,'performance.LS'= perf.LS)
|
||||||
return(result)
|
return(result)
|
||||||
|
|
Loading…
Reference in New Issue