Update of Local score
This commit is contained in:
parent
bf50e2294c
commit
7e8eb49d95
|
@ -22,9 +22,12 @@ SimulationH1 <- function(lambda0, lambda1,T,tau){
|
|||
ppH0_avant=ppH0bis[which(ppH0bis<ppH1.repo[1])]
|
||||
ppH0_apres=ppH0bis[which(ppH0bis>ppH1.repo[length(ppH1.repo)])]
|
||||
ppH1=c(ppH0_avant,ppH1.repo,ppH0_apres)
|
||||
return (ppH1)
|
||||
return (c(ppH1,which(ppH1==min(ppH1.repo))))
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
```{r}
|
||||
TimeBetweenEvent <- function(pp){
|
||||
n=length(pp)
|
||||
tbe=pp[2:n]-pp[1:n1-1]
|
||||
|
@ -93,30 +96,39 @@ tau=1
|
|||
ppH0=PoissonProcess(lambda0,T)
|
||||
CDF=Plot_CDF(lambda0,n_sample,T,tau)
|
||||
```
|
||||
```{r}
|
||||
n_sample=10**4
|
||||
lambda1=4
|
||||
T=10
|
||||
tau=1
|
||||
ppH0=PoissonProcess(lambda1,T)
|
||||
CDF=Plot_CDF(lambda1,n_sample,T,tau)
|
||||
```
|
||||
|
||||
```{r}
|
||||
PValue <- function(Emp,ppH1, T, tau){
|
||||
scanH1=ScanStat(ppH1,T,tau)[2]
|
||||
index_scanH1=ScanStat(ppH1,T,tau)[1]
|
||||
index=Emp$index_scan
|
||||
n=length(index)
|
||||
if (scanH1< min(Emp$index_scan)){
|
||||
return (c(scanH1,1))
|
||||
return (c(scanH1,1,index_scanH1))
|
||||
} else{
|
||||
if(min(Emp$index_scan)<scanH1 && scanH1<=max(Emp$index_scan)){
|
||||
return(c(scanH1,1-Emp$cdf[scanH1-min(Emp$index_scan)+1]))
|
||||
} else{return (c(scanH1,0))}}
|
||||
return(c(scanH1,1-Emp$cdf[scanH1-min(Emp$index_scan)+1],index_scanH1))
|
||||
} else{return (c(scanH1,0,index_scanH1))}}
|
||||
}
|
||||
```
|
||||
|
||||
### 2.2. Simulation under $\mathcal{H}_0$ and computation of p-values
|
||||
On simule des séquences sous $\mathcal{H}_0$, que l'on stocke. On calcule la valeur de la scan stat et de la p-value, que l'on stocke aussi. On a une séquence de p-valeur des scans et une séquence de score local.
|
||||
```{r}
|
||||
NbSeqH0=5
|
||||
NbSeqH1=5
|
||||
NbSeqH0=5000
|
||||
NbSeqH1=NbSeqH0
|
||||
DataH0=vector("list")
|
||||
DataH1=vector("list")
|
||||
lambda0=3
|
||||
lambda1=5
|
||||
lambda1=4
|
||||
T=10
|
||||
tau=1
|
||||
|
||||
|
@ -127,9 +139,11 @@ for (i in 1:NbSeqH0) {
|
|||
}
|
||||
|
||||
#Creation of a sequence that contains the sequence simulated under the alternative hypothesis
|
||||
seqH1begin=c()
|
||||
for (i in 1:NbSeqH1) {
|
||||
pphi=SimulationH1(lambda0, lambda1,T,tau)
|
||||
DataH1[[i]]=pphi
|
||||
DataH1[[i]]=pphi[1]
|
||||
seqH1begin=c(pphi[2],seqH1begin)
|
||||
}
|
||||
|
||||
#Computation of the time between events
|
||||
|
@ -152,6 +166,7 @@ We compute the p-value associated to all 5 sequences, and stock them in a vector
|
|||
Emp=EmpDistrib(lambda0,n_sample,T,tau)
|
||||
scan=c()
|
||||
pvalue=c()
|
||||
index_scan=c()
|
||||
|
||||
#Then, we stock the p-value and the
|
||||
for (i in 1:NbSeqH0){
|
||||
|
@ -159,12 +174,64 @@ for (i in 1:NbSeqH0){
|
|||
result=PValue(Emp,DataH0[[i]],T,tau)
|
||||
scan=c(scan,result[1])
|
||||
pvalue=c(pvalue,result[2])
|
||||
cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
|
||||
index_scan=c(index_scan,result[3])
|
||||
#cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
|
||||
#print(length(ppi))
|
||||
}
|
||||
ScS_H0=data.frame(num=1:NbSeqH0, index=scan, pvalue_scan=pvalue, class=(pvalue<0.05))
|
||||
ScS_H0
|
||||
ScS_H0=data.frame(num=1:NbSeqH0, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan)
|
||||
sum(ScS_H0$class[which(ScS_H0$class==TRUE)])/NbSeqH0
|
||||
```
|
||||
|
||||
```{r}
|
||||
#We start by computing the empirical distribution for lambda0
|
||||
scan=c()
|
||||
pvalue=c()
|
||||
index_scan=c()
|
||||
|
||||
#Then, we stock the p-value and the
|
||||
for (i in 1:NbSeqH1){
|
||||
ppi=DataH1[[i]]
|
||||
result=PValue(Emp,DataH1[[i]],T,tau)
|
||||
scan=c(scan,result[1])
|
||||
pvalue=c(pvalue,result[2])
|
||||
index_scan=c(index_scan,result[3])
|
||||
#cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
|
||||
#print(length(ppi))
|
||||
}
|
||||
ScS_H1=data.frame(num=1:NbSeqH1, scan_stat=scan, pvalue_scan=pvalue, class=(pvalue<0.05), begin_scan=index_scan, begin_seq_H1=seqH1begin)
|
||||
sum(ScS_H1$class[which(ScS_H0$class==TRUE)])/NbSeqH1
|
||||
ScS_H1
|
||||
```
|
||||
|
||||
## 3. Local score
|
||||
### Distribution des scores via Monte-Carlo
|
||||
```{r}
|
||||
# Calcul du choix de E
|
||||
E = 1
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
maxXk
|
||||
while (maxXk < 3) {
|
||||
E = E+1
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
}
|
||||
print(E)
|
||||
|
||||
ppH0 = PoissonProcess(lambda0,10^4)
|
||||
n1 = length(ppH0)
|
||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
||||
print(ks.test(tbe0,'exp'))
|
||||
x = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
|
||||
#hist(x)
|
||||
#print(summary(x))
|
||||
|
||||
P_X = table(factor(x, levels = min(x):max(x)))
|
||||
P_X = P_X/sum(table(x))
|
||||
|
||||
#print(dist.theo.scores) # Mettre à jour avec Elisa
|
||||
print(P_X)
|
||||
```
|
||||
|
||||
### Calcul du local score
|
||||
```{r}
|
||||
library("localScore")
|
||||
library(Rcpp)
|
||||
|
@ -176,7 +243,7 @@ for (i in 1:NbSeqH0){
|
|||
|
||||
max_X = max(X)
|
||||
min_X = min(X)
|
||||
P_X = table(factor(X, levels = min_X:max_X))/length(X)
|
||||
P_X = table(factor(X, levels = min_X:max_X))/length(X) # supprimer pour les séquences de MC
|
||||
|
||||
LS=localScoreC(X)$localScore[1]
|
||||
|
||||
|
@ -188,41 +255,3 @@ LS_H0=data.frame(num=1:NbSeqH0, pvalue_scan=pvalue, class=(pvalue<0.05))
|
|||
LS_H0
|
||||
```
|
||||
|
||||
## A reformater
|
||||
```{r}
|
||||
# distribtion des scores via MC
|
||||
# Nb seq. pp -> Nb seq. tbe -> dist. tbe (vérif) + Nb seq. Scores -> distr scores
|
||||
|
||||
A = 1/(lambda0-lambda1)
|
||||
B = A*log(lambda1/lambda0)
|
||||
|
||||
ppH1 = PoissonProcess(lambda1,T)
|
||||
n1 = length(ppH1)
|
||||
tbe1 = ppH1[2:n1]-ppH1[1:n1-1]
|
||||
print(tbe1)
|
||||
print(ks.test(tbe1,'exp'))
|
||||
x = log(lambda1/lambda0)+(lambda0-lambda1)*tbe1 # ne pas mettre le floor ni le E (certes égale à 1)
|
||||
hist(x)
|
||||
print(summary(x))
|
||||
|
||||
# Calcul du maximum des scores
|
||||
E = 1
|
||||
# THEO à faire !!! max.s = log(lambda1/lambda0)
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
maxXk
|
||||
while (maxXk < 3) {
|
||||
E = E+1
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
}
|
||||
print(E)
|
||||
|
||||
x = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe1))
|
||||
dist.emp.scores = table(x)/sum(table(x))
|
||||
dist.emp.scores
|
||||
hist(x)
|
||||
print(range(x))
|
||||
x.verif = seq(range(x)[1],range(x)[2],1)
|
||||
dist.theo.scores = lambda0*exp(-lambda0*(A*x.verif-B))
|
||||
print(dist.theo.scores)
|
||||
print(dist.emp.scores)
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue