Integration scanstat.Rmd code
This commit is contained in:
parent
92c5d6e9a5
commit
799dbef078
|
@ -11,6 +11,7 @@ library("localScore")
|
|||
library("latex2exp")
|
||||
library("Rcpp")
|
||||
library("caret")
|
||||
library("ROCR")
|
||||
```
|
||||
|
||||
## 1. Proposition for simulations under $\mathcal{H}_1$
|
||||
|
@ -370,7 +371,7 @@ LocalScoreMC <- function(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0){
|
|||
|
||||
pvalue = c(pvalue, daudin_result)
|
||||
}
|
||||
LS_H0=data.frame(num=1:NbSeq, pvalue_scan=pvalue, class=(pvalue<0.05))
|
||||
LS_H0=data.frame(num=1:NbSeq, pvalue_scan=pvalue, class=as.numeric(pvalue<0.05))
|
||||
return(LS_H0)
|
||||
}
|
||||
```
|
||||
|
@ -554,3 +555,141 @@ for (i in (1:NbSeq)) {
|
|||
titleSpec=TeX(paste(r'(Specificity for $\lambda_0=$)', lambda0))
|
||||
plot(x=accepted_lambda,y=Specificity, type='l', main = titleSpec)
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## CompareMethods
|
||||
```{r}
|
||||
CompareMethods <- function(lambda0, lambda1, NbSeq, T, tau){
|
||||
if (lambda0 < lambda1){
|
||||
|
||||
cat("For T = ", T, ", Nb = ", NbSeq, ", lambda0 = ", lambda0, " and lambda1 = ", lambda1, ":\n", sep = "")
|
||||
tbe0 = vector("list", length = NbSeq)
|
||||
pp0 = vector("list", length = NbSeq)
|
||||
pp1 = vector("list", length = NbSeq)
|
||||
tbe1 = vector("list", length = NbSeq)
|
||||
|
||||
for (i in (1:NbSeq)) {
|
||||
#Simulation for sequences under H0
|
||||
ppi = PoissonProcess(lambda0,T)
|
||||
ni=length(ppi)
|
||||
pp0[[i]] = ppi
|
||||
tbei = ppi[2:ni]-ppi[1:ni-1]
|
||||
tbe0[[i]] = tbei
|
||||
|
||||
#Simulation for sequences under H1
|
||||
ppj1 = SimulationH1(lambda0, lambda1, T, tau)
|
||||
nj = length(ppj1)
|
||||
pp1[[i]] = ppj1
|
||||
tbej = ppj1[2:nj]-ppj1[1:nj-1]
|
||||
tbe1[[i]] = tbej
|
||||
}
|
||||
|
||||
#cat("- Empiric version:\n")
|
||||
Score = ScoreDistribEmpiric(lambda0, lambda1, NbSeq, T)
|
||||
LS_H0 = LocalScoreMC(lambda0, lambda1, NbSeq, T, Score$Score_X, Score$P_X, tbe0)
|
||||
LS_H1 = LocalScoreMC(lambda0, lambda1, NbSeq, T, Score$Score_X, Score$P_X, tbe1)
|
||||
LS_obtained = c(LS_H0$class, LS_H1$class)
|
||||
options(warn = -1)
|
||||
|
||||
Emp = EmpDistrib(lambda0,n_sample,T,tau)
|
||||
SS_H0 = ScanStatMC(NbSeq, T, tau, Emp, pp0)
|
||||
SS_H1 = ScanStatMC(NbSeq, T, tau, Emp, pp1)
|
||||
SS_obtained = c(SS_H0$class, SS_H1$class)
|
||||
|
||||
|
||||
cat("--- Confusion matrix for scan statistic method --- \n")
|
||||
theoretical_results_SS = c(rep(0,length(SS_H0$num)), rep(1,length(SS_H1$num)))
|
||||
print(confusionMatrix(as.factor(SS_obtained), as.factor(theoretical_results_SS),
|
||||
dnn = c("Prediction", "Reference"))$table)
|
||||
|
||||
cat("--- Confusion matrix for local score method --- \n")
|
||||
theoretical_results_LS = c(rep(0,length(LS_H0$num)), rep(1,length(LS_H1$num)))
|
||||
print(confusionMatrix(as.factor(LS_obtained), as.factor(theoretical_results_LS),
|
||||
dnn = c("Prediction", "Reference"))$table)
|
||||
|
||||
#cat("--- Coube ROC associé")
|
||||
title_ROC = TeX(paste(r'(ROC curve for $H_0: \lambda_0=$)', lambda0,
|
||||
r'(against $H_1: \lambda_0=$)', lambda1))
|
||||
pred.SS = prediction(theoretical_results_SS,SS_obtained)
|
||||
pred.LS = prediction(theoretical_results_LS,LS_obtained)
|
||||
perf.SS = performance(pred.SS,"tpr", "fpr")
|
||||
perf.LS = performance(pred.LS,"tpr", "fpr")
|
||||
#plot(perf.SS, lty=1, col="coral")
|
||||
par(new=T)
|
||||
#plot(perf.LS, lty=2, col="coral", main=title_ROC)
|
||||
cat("-----------------------------------\n")
|
||||
|
||||
|
||||
result <- c('performance.SS'= perf.SS,'performance.LS'= perf.LS)
|
||||
return(result)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```{r}
|
||||
NbSeq = 100
|
||||
T = 10
|
||||
tau = 2
|
||||
lambda0 = 0.3
|
||||
lambda1 = 0.5
|
||||
|
||||
result1 = CompareMethods(lambda0, lambda1, NbSeq, T, tau)
|
||||
|
||||
lambda0 = 0.01
|
||||
lambda1 = 1
|
||||
|
||||
result2 = CompareMethods(lambda0, lambda1, NbSeq, T, tau)
|
||||
|
||||
lambda0 = 1
|
||||
lambda1 = 1.1
|
||||
|
||||
result3 = CompareMethods(lambda0, lambda1, NbSeq, T, tau)
|
||||
|
||||
|
||||
lambda0 = 0.9
|
||||
lambda1 = 2
|
||||
|
||||
result4 = CompareMethods(lambda0, lambda1, NbSeq, T, tau)
|
||||
|
||||
|
||||
title_ROC = TeX(paste(r'(ROC curve for several values of $\lambda_0$ and $\lambda_1$)'))
|
||||
|
||||
perf1SS = result1[1]
|
||||
perf1LS = result1[2]
|
||||
|
||||
perf2SS = result2[1]
|
||||
perf2LS = result2[2]
|
||||
|
||||
perf3SS = result3[1]
|
||||
perf3LS = result3[2]
|
||||
|
||||
perf4SS = result4[1]
|
||||
perf4LS = result4[2]
|
||||
|
||||
|
||||
plot(perf1SS$performance.SS, lty=1, col="coral", lwd = 2)
|
||||
par(new=T)
|
||||
plot(perf1LS$performance.LS, lty=2, col="coral",lwd = 2)
|
||||
|
||||
par(new=T)
|
||||
plot(perf2SS$performance.SS, lty=1, col="cyan4", lwd = 2)
|
||||
par(new=T)
|
||||
plot(perf2LS$performance.LS, lty=2, col="cyan4", lwd = 2)
|
||||
|
||||
par(new=T)
|
||||
plot(perf3SS$performance.SS, lty=1, col="magenta4", lwd = 2)
|
||||
par(new=T)
|
||||
plot(perf3LS$performance.LS, lty=2, col="magenta4", lwd = 2)
|
||||
|
||||
par(new=T)
|
||||
plot(perf4SS$performance.SS, lty=1, col="olivedrab4", lwd = 2)
|
||||
par(new=T)
|
||||
plot(perf4LS$performance.LS, lty=2, col="olivedrab4", lwd = 2,main=title_ROC)
|
||||
|
||||
legend(0.5, 0.3, legend=c("lambda0 = 0.3, lambda1 = 0.5", "lambda0 = 1, lambda1 = 9", "lambda0 = 2, lambda1 = 6", "lambda0 = 8, lambda1 = 9", "lambda0 = 0.1, lambda1 = 0.2")
|
||||
,col=c("coral", "cyan4", "magenta4", "olivedrab4", "lightgoldenrod3"), lty=1, cex=0.9,lwd=4,
|
||||
box.lty=0)
|
||||
```
|
Loading…
Reference in New Issue