Add local score function
This commit is contained in:
parent
2e89ba20b5
commit
6d7ee5d676
|
@ -128,7 +128,7 @@ NbSeqH1=NbSeqH0
|
|||
DataH0=vector("list")
|
||||
DataH1=vector("list")
|
||||
lambda0=3
|
||||
lambda1=5
|
||||
lambda1=30
|
||||
T=10
|
||||
tau=1
|
||||
|
||||
|
@ -209,20 +209,17 @@ ScS_H1
|
|||
# Calcul du choix de E
|
||||
E = 1
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
maxXk
|
||||
while (maxXk < 3) {
|
||||
E = E+1
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
}
|
||||
print(E)
|
||||
|
||||
ppH0 = PoissonProcess(lambda0,10^4)
|
||||
n1 = length(ppH0)
|
||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
||||
print(ks.test(tbe0, 'exp'))
|
||||
|
||||
xp = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
|
||||
#hist(x)
|
||||
#print(summary(x))
|
||||
|
||||
min_X = min(xp)
|
||||
max_X = max(xp)
|
||||
|
@ -239,6 +236,42 @@ print(Mean_xp)
|
|||
#print(P_X)
|
||||
```
|
||||
|
||||
```{r}
|
||||
ComputeE <- function(lambda0, lambda1){
|
||||
E = 1
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
while (maxXk < 3) {
|
||||
E = E+1
|
||||
maxXk = floor(E*(log(lambda1/lambda0)))
|
||||
}
|
||||
|
||||
return (E)
|
||||
}
|
||||
```
|
||||
|
||||
```{r}
|
||||
ScoreDistrib <- function(lambda0, lambda1, n_sample, T){
|
||||
E = ComputeE(lambda0, lambda1)
|
||||
|
||||
ppH0 = PoissonProcess(lambda0,T)
|
||||
n1 = length(ppH0)
|
||||
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
|
||||
print(ks.test(tbe0, 'exp'))
|
||||
|
||||
X = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
|
||||
|
||||
min_X = min(X)
|
||||
max_X = max(X)
|
||||
|
||||
vect.score = min_X:max_X
|
||||
|
||||
P_X = table(factor(X, levels = min_X:max_X))
|
||||
P_X = P_X/sum(table(X))
|
||||
|
||||
return (list("X" = X, "P_X" = P_X))
|
||||
}
|
||||
```
|
||||
|
||||
### Calcul du local score
|
||||
```{r}
|
||||
library("localScore")
|
||||
|
@ -247,6 +280,13 @@ E = 10
|
|||
pvalue=c()
|
||||
X=c()
|
||||
|
||||
Score = ScoreDistrib(lambda0, lambda1, n_sample, 10**4)
|
||||
xp = Score$X
|
||||
P_X = Score$P_X
|
||||
|
||||
min_X = min(xp)
|
||||
max_X = max(xp)
|
||||
|
||||
for (i in 1:NbSeqH0){
|
||||
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
|
||||
X=c(X,x)
|
||||
|
|
Loading…
Reference in New Issue