Add local score function

This commit is contained in:
Paul-Corbalan 2022-04-05 11:20:46 +02:00
parent 2e89ba20b5
commit 6d7ee5d676
1 changed files with 46 additions and 6 deletions

View File

@ -128,7 +128,7 @@ NbSeqH1=NbSeqH0
DataH0=vector("list") DataH0=vector("list")
DataH1=vector("list") DataH1=vector("list")
lambda0=3 lambda0=3
lambda1=5 lambda1=30
T=10 T=10
tau=1 tau=1
@ -209,20 +209,17 @@ ScS_H1
# Calcul du choix de E # Calcul du choix de E
E = 1 E = 1
maxXk = floor(E*(log(lambda1/lambda0))) maxXk = floor(E*(log(lambda1/lambda0)))
maxXk
while (maxXk < 3) { while (maxXk < 3) {
E = E+1 E = E+1
maxXk = floor(E*(log(lambda1/lambda0))) maxXk = floor(E*(log(lambda1/lambda0)))
} }
print(E)
ppH0 = PoissonProcess(lambda0,10^4) ppH0 = PoissonProcess(lambda0,10^4)
n1 = length(ppH0) n1 = length(ppH0)
tbe0 = ppH0[2:n1]-ppH0[1:n1-1] tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
print(ks.test(tbe0, 'exp')) print(ks.test(tbe0, 'exp'))
xp = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1) xp = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
#hist(x)
#print(summary(x))
min_X = min(xp) min_X = min(xp)
max_X = max(xp) max_X = max(xp)
@ -239,6 +236,42 @@ print(Mean_xp)
#print(P_X) #print(P_X)
``` ```
```{r}
ComputeE <- function(lambda0, lambda1){
E = 1
maxXk = floor(E*(log(lambda1/lambda0)))
while (maxXk < 3) {
E = E+1
maxXk = floor(E*(log(lambda1/lambda0)))
}
return (E)
}
```
```{r}
ScoreDistrib <- function(lambda0, lambda1, n_sample, T){
E = ComputeE(lambda0, lambda1)
ppH0 = PoissonProcess(lambda0,T)
n1 = length(ppH0)
tbe0 = ppH0[2:n1]-ppH0[1:n1-1]
print(ks.test(tbe0, 'exp'))
X = floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe0)) # ne pas mettre le floor ni le E (certes égale à 1)
min_X = min(X)
max_X = max(X)
vect.score = min_X:max_X
P_X = table(factor(X, levels = min_X:max_X))
P_X = P_X/sum(table(X))
return (list("X" = X, "P_X" = P_X))
}
```
### Calcul du local score ### Calcul du local score
```{r} ```{r}
library("localScore") library("localScore")
@ -247,6 +280,13 @@ E = 10
pvalue=c() pvalue=c()
X=c() X=c()
Score = ScoreDistrib(lambda0, lambda1, n_sample, 10**4)
xp = Score$X
P_X = Score$P_X
min_X = min(xp)
max_X = max(xp)
for (i in 1:NbSeqH0){ for (i in 1:NbSeqH0){
x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0))) x = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
X=c(X,x) X=c(X,x)