Update Comparaison_of_methods.rmd
Add_Paul+Nicolas
This commit is contained in:
		
							parent
							
								
									840dad7d43
								
							
						
					
					
						commit
						425077cf27
					
				@ -3,47 +3,228 @@ title: "Comparaison of methods"
 | 
			
		||||
output: pdf_document
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# Scan statistique - Méthode de Monte Carlo et calcul de p-value
 | 
			
		||||
 | 
			
		||||
## 1. Proposition for simulations under $\mathcal{H}_1$
 | 
			
		||||
 | 
			
		||||
In this part, we propose a method that simulates a Poisson process under the hypothesis $\mathcal{H}_1$. The idea is to simulate a sample under $\mathcal{H}_0$, and add randomly a subsequence under the alternative hypothesis in this sequence. 
 | 
			
		||||
```{r}
 | 
			
		||||
PoissonProcess <- function(lambda,T) {
 | 
			
		||||
  return(sort(runif(rpois(1,lambda*T),0,T)))
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pp1=PoissonProcess(lambda0,Ti)
 | 
			
		||||
SimulationH1 <- function(lambda0, lambda1,T,tau){
 | 
			
		||||
    ppH0=PoissonProcess(lambda0,T)
 | 
			
		||||
    ppH1.segt=PoissonProcess(lambda1,tau)
 | 
			
		||||
    dbt=runif(1,0,T-tau)
 | 
			
		||||
    ppH0bis=PoissonProcess(lambda0,T)
 | 
			
		||||
    ppH1.repo=dbt+ppH1.segt
 | 
			
		||||
    ppH0_avant=ppH0bis[which(ppH0bis<ppH1.repo[1])]
 | 
			
		||||
    ppH0_apres=ppH0bis[which(ppH0bis>ppH1.repo[length(ppH1.repo)])]
 | 
			
		||||
    ppH1=c(ppH0_avant,ppH1.repo,ppH0_apres)
 | 
			
		||||
    return (ppH1)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TimeBetweenEvent <- function(pp){
 | 
			
		||||
    n=length(pp)
 | 
			
		||||
    tbe=pp[2:n]-pp[1:n1-1]
 | 
			
		||||
    tbe=c(0,tbe)
 | 
			
		||||
    return (tbe)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
DataFrame <- function(pp,tbe){
 | 
			
		||||
    list=data.frame(ProcessusPoisson=pp, TimeBetweenEvent=tbe)
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## 2. Simulation of the sequences under $\mathcal{H}_0$ via a Monte Carlo Method
 | 
			
		||||
In this part, we will try to simulate, using a Monte Carlo method, a set of $10^5$ independant samples, under the assumption that $\lambda=\lambda_0$, hence, that we are under the null hypothesis $\mathcal{H}_0$.  
 | 
			
		||||
```{r}
 | 
			
		||||
ScanStat <- function(pp, T, tau){
 | 
			
		||||
    n=length(pp)
 | 
			
		||||
    stop=n-length(which(pp>(T-tau)))
 | 
			
		||||
    ScanStat=0
 | 
			
		||||
    for (i in (1:stop)) {
 | 
			
		||||
        x=which((pp>=pp[i])&(pp<=(pp[i]+tau)))
 | 
			
		||||
        scan=length(x)
 | 
			
		||||
        if (scan>ScanStat) {ScanStat=scan}
 | 
			
		||||
  }   
 | 
			
		||||
    return (c(i,ScanStat))
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
We test the scan statistic method for different values of $\lambda_0$. The method of scan statistic we implemented will allow us to have access to the scan test statistic and where it happens in the sequence. 
 | 
			
		||||
```{r}
 | 
			
		||||
EmpDistrib <- function(lambda, n_sample,T,tau){
 | 
			
		||||
    pp=PoissonProcess(lambda,T)
 | 
			
		||||
    scan=c(ScanStat(pp,T, tau)[2])
 | 
			
		||||
    index=c(ScanStat(pp,T, tau)[1])
 | 
			
		||||
    for (i in 2:(n_sample)){
 | 
			
		||||
        pp=PoissonProcess(lambda,T)
 | 
			
		||||
        scan=rbind(scan,ScanStat(pp,T, tau)[2])
 | 
			
		||||
        index=rbind(index,ScanStat(pp,T, tau)[1])
 | 
			
		||||
    }
 | 
			
		||||
    min_scan=min(scan)-1
 | 
			
		||||
    max_scan=max(scan)
 | 
			
		||||
    table1=table(factor(scan, levels = min_scan:max_scan))
 | 
			
		||||
    EmpDis=data.frame(cdf=cumsum(table1)/sum(table1), proba=table1/sum(table1), index_scan=min_scan:max_scan)
 | 
			
		||||
    EmpDis<-EmpDis[,-2]
 | 
			
		||||
    return(EmpDis)
 | 
			
		||||
    }
 | 
			
		||||
```
 | 
			
		||||
```{r}
 | 
			
		||||
library("latex2exp")
 | 
			
		||||
Plot_CDF <- function(lambda,n_sample,T,tau){
 | 
			
		||||
    Emp=EmpDistrib(lambda,n_sample,T,tau)
 | 
			
		||||
    title=TeX(paste(r'(Cumulative distribution function for $\lambda=$)', lambda))
 | 
			
		||||
    plot(Emp$index_scan, Emp$cdf,type="s",xlab="Number of occurrences",ylab="Probability", main=title, col="red")
 | 
			
		||||
    return(Emp)
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
### 2.1 Test of $\mathcal{H}_0: \lambda=\lambda_0$ against $\mathcal{H}_0: \lambda=\lambda_1$, where $\lambda_1 > \lambda_0$ 
 | 
			
		||||
In this part, we will test different values for $\lambda_0$ and $\lambda_1$, and compute the probability of occurrence of a certain scan statistic.
 | 
			
		||||
 | 
			
		||||
```{r}
 | 
			
		||||
#Empiricial distribution under H0
 | 
			
		||||
n_sample=10**4
 | 
			
		||||
lambda0=3
 | 
			
		||||
T=10
 | 
			
		||||
tau=1
 | 
			
		||||
ppH0=PoissonProcess(lambda0,T)
 | 
			
		||||
CDF=Plot_CDF(lambda0,n_sample,T,tau)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```{r}
 | 
			
		||||
PValue <- function(Emp,ppH1, T, tau){
 | 
			
		||||
    scanH1=ScanStat(ppH1,T,tau)[2]
 | 
			
		||||
    index=Emp$index_scan
 | 
			
		||||
    n=length(index)
 | 
			
		||||
    if (scanH1< min(Emp$index_scan)){
 | 
			
		||||
        return (c(scanH1,1))
 | 
			
		||||
        } else{
 | 
			
		||||
            if(min(Emp$index_scan)<scanH1 && scanH1<=max(Emp$index_scan)){
 | 
			
		||||
                return(c(scanH1,1-Emp$cdf[scanH1-min(Emp$index_scan)+1]))
 | 
			
		||||
            } else{return (c(scanH1,0))}}
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2.2. Simulation under $\mathcal{H}_0$ and computation of p-values
 | 
			
		||||
On simule des séquences sous $\mathcal{H}_0$, que l'on stocke. On calcule la valeur de la scan stat et de la p-value, que l'on stocke aussi. On a une séquence de p-valeur des scans et une séquence de score local.
 | 
			
		||||
```{r}
 | 
			
		||||
NbSeqH0=5
 | 
			
		||||
NbSeqH1=5
 | 
			
		||||
DataH0=vector("list")
 | 
			
		||||
DataH1=vector("list")
 | 
			
		||||
lambda0=3
 | 
			
		||||
lambda1=5
 | 
			
		||||
T=10
 | 
			
		||||
tau=1
 | 
			
		||||
 | 
			
		||||
#Creation of a sequence that contains the sequence simulated under the null hypothesis
 | 
			
		||||
for (i in 1:NbSeqH0) {
 | 
			
		||||
    ppi=PoissonProcess(lambda0,T)
 | 
			
		||||
    DataH0[[i]]=ppi
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#Creation of a sequence that contains the sequence simulated under the alternative hypothesis
 | 
			
		||||
for (i in 1:NbSeqH1) {
 | 
			
		||||
    pphi=SimulationH1(lambda0, lambda1,T,tau)
 | 
			
		||||
    DataH1[[i]]=pphi
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#Computation of the time between events
 | 
			
		||||
TimeBetweenEventList <- function(list,n_list){
 | 
			
		||||
    TBE=vector("list",length=n_list)
 | 
			
		||||
    for (i in (1:n_list)) {
 | 
			
		||||
        ppi=list[[i]]
 | 
			
		||||
        ni=length(ppi)
 | 
			
		||||
        tbei=ppi[2:ni]-ppi[1:ni-1]
 | 
			
		||||
        TBE[[i]]=tbei
 | 
			
		||||
    }
 | 
			
		||||
    return (TBE)
 | 
			
		||||
}
 | 
			
		||||
tbe0=TimeBetweenEventList(DataH0,NbSeqH0)
 | 
			
		||||
```
 | 
			
		||||
We compute the p-value associated to all 5 sequences, and stock them in a vector. 
 | 
			
		||||
 | 
			
		||||
```{r}
 | 
			
		||||
#We start by computing the empirical distribution for lambda0
 | 
			
		||||
Emp=EmpDistrib(lambda0,n_sample,T,tau)
 | 
			
		||||
scan=c()
 | 
			
		||||
pvalue=c()
 | 
			
		||||
 | 
			
		||||
#Then, we stock the p-value and the 
 | 
			
		||||
for (i in 1:NbSeqH0){
 | 
			
		||||
    ppi=DataH0[[i]]
 | 
			
		||||
    result=PValue(Emp,DataH0[[i]],T,tau)
 | 
			
		||||
    scan=c(scan,result[1])
 | 
			
		||||
    pvalue=c(pvalue,result[2])
 | 
			
		||||
    cat(paste("\nSimulation for the sequence", i, ", for lambda0=",lambda0, " ,lambda1=", lambda1, " , scan=", result[1] ,"p-value=",result[2]))
 | 
			
		||||
}
 | 
			
		||||
ScS_H0=data.frame(num=1:NbSeqH0, index=scan, pvalue_scan=pvalue, class=(pvalue<0.05))
 | 
			
		||||
ScS_H0
 | 
			
		||||
```
 | 
			
		||||
## 3.Local score
 | 
			
		||||
```{r}
 | 
			
		||||
library("localScore")
 | 
			
		||||
library(Rcpp)
 | 
			
		||||
E = 10
 | 
			
		||||
pvalue=c()
 | 
			
		||||
 | 
			
		||||
for (i in 1:NbSeqH0){
 | 
			
		||||
  X = floor(E*log(dexp(tbe0[[i]], rate = lambda1)/dexp(tbe0[[i]], rate = lambda0)))
 | 
			
		||||
  
 | 
			
		||||
  max_X = max(X)
 | 
			
		||||
  min_X = min(X)
 | 
			
		||||
  P_X = table(factor(X, levels = min_X:max_X))/length(X)
 | 
			
		||||
  
 | 
			
		||||
  LS=localScoreC(X)$localScore[1]
 | 
			
		||||
  
 | 
			
		||||
  result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(X), sequence_min = min_X, sequence_max =max_X)
 | 
			
		||||
  
 | 
			
		||||
  pvalue=c(pvalue,result)
 | 
			
		||||
}
 | 
			
		||||
LS_H0=data.frame(num=1:NbSeqH0, pvalue_scan=pvalue, class=(pvalue<0.05))
 | 
			
		||||
LS_H0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## A reformater
 | 
			
		||||
# distribtion des scores via MC
 | 
			
		||||
# Nb seq. pp -> Nb seq. tbe -> dist. tbe (vérif) + Nb seq. Scores -> distr scores
 | 
			
		||||
 | 
			
		||||
PoissonProcess <- function(lambda,T) {
 | 
			
		||||
return(sort(runif(rpois(1,lambda*T),0,T)))
 | 
			
		||||
}
 | 
			
		||||
lambda0=2
 | 
			
		||||
lambda1=3
 | 
			
		||||
Ti=100000
 | 
			
		||||
pp1=PoissonProcess(lambda1,Ti)
 | 
			
		||||
print(pp1)
 | 
			
		||||
plot(c(0,pp1),0:length(pp1),type="s",xlab="time t",ylab="number of events by time t")
 | 
			
		||||
 | 
			
		||||
pp2=PoissonProcess(lambda1,Ti)
 | 
			
		||||
print(pp2)
 | 
			
		||||
plot(c(0,pp2),0:length(pp2),type="s",xlab="time t",ylab="number of events by time t")
 | 
			
		||||
 | 
			
		||||
#time between events 
 | 
			
		||||
n1=length(pp1)
 | 
			
		||||
tbe1=pp1[2:n1]-pp1[1:n1-1]
 | 
			
		||||
tbe1
 | 
			
		||||
ks.test(tbe1,'exp',lambda)
 | 
			
		||||
x=log(lambda1/lambda0)+(lambda0-lambda1)*tbe1 # ne pas mettre le floor ni le E (certes égale à 1)
 | 
			
		||||
hist(x)
 | 
			
		||||
summary(x)
 | 
			
		||||
 | 
			
		||||
n2=length(pp2)
 | 
			
		||||
tbe2=pp2[2:n2]-pp2[1:n2-1]
 | 
			
		||||
tbe2
 | 
			
		||||
# Calcul du maximum des scores
 | 
			
		||||
E=1
 | 
			
		||||
# THEO à faire !!! max.s=log(lambda1/lambda0)
 | 
			
		||||
maxXk = floor(E*(log(lambda1/lambda0)))
 | 
			
		||||
maxXk
 | 
			
		||||
while (maxXk < 3) {
 | 
			
		||||
  E = E+1
 | 
			
		||||
  maxXk = floor(E*(log(lambda1/lambda0)))
 | 
			
		||||
}
 | 
			
		||||
E
 | 
			
		||||
 | 
			
		||||
ks.test(tbe1,pexp,lambda0, alternative="two.sided")
 | 
			
		||||
 | 
			
		||||
ks.test(tbe2,pexp,lambda1, alternative="two.sided")
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Local score
 | 
			
		||||
```{r}
 | 
			
		||||
lambda0 = 1
 | 
			
		||||
lambda1 = 2
 | 
			
		||||
library("localScore")
 | 
			
		||||
E = 10
 | 
			
		||||
X = floor(E*log(dexp(tbe1, rate = lambda1)/dexp(tbe1, rate = lambda0)))
 | 
			
		||||
 | 
			
		||||
max_X = max(X)
 | 
			
		||||
min_X = min(X)
 | 
			
		||||
P_X = table(factor(X, levels = min_X:max_X))/length(X)
 | 
			
		||||
 | 
			
		||||
LS=localScoreC(X)$localScore[1]
 | 
			
		||||
LS
 | 
			
		||||
 | 
			
		||||
result = daudin(localScore = LS, score_probabilities = P_X, sequence_length = length(x), sequence_min = min_X, sequence_max = max_X)
 | 
			
		||||
result
 | 
			
		||||
```
 | 
			
		||||
x=floor(E*(log(lambda1/lambda0)+(lambda0-lambda1)*tbe1))
 | 
			
		||||
dist.emp.scores=table(x)/sum(table(x))
 | 
			
		||||
dist.emp.scores
 | 
			
		||||
hist(x)
 | 
			
		||||
range(x)
 | 
			
		||||
x.verif=seq(range(x)[1],range(x)[2],1)
 | 
			
		||||
dist.theo.scores=lambda0*exp(-lambda0*(A*x.verif-B))
 | 
			
		||||
dist.theo.scores
 | 
			
		||||
dist.emp.scores
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user