Update ScoreDistribElisa format
This commit is contained in:
		
							parent
							
								
									7193c45e5a
								
							
						
					
					
						commit
						271b7d3a41
					
				@ -227,7 +227,7 @@ ComputeE <- function(lambda0, lambda1){
 | 
				
			|||||||
```{r}
 | 
					```{r}
 | 
				
			||||||
ScoreDistribEmpiric <- function(lambda0, lambda1, n_sample, T){
 | 
					ScoreDistribEmpiric <- function(lambda0, lambda1, n_sample, T){
 | 
				
			||||||
    E = ComputeE(lambda0, lambda1)
 | 
					    E = ComputeE(lambda0, lambda1)
 | 
				
			||||||
    Score=c()
 | 
					    Score = c()
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    for (i in 1:n_sample){
 | 
					    for (i in 1:n_sample){
 | 
				
			||||||
        ppH0 = PoissonProcess(lambda0,T)
 | 
					        ppH0 = PoissonProcess(lambda0,T)
 | 
				
			||||||
@ -248,22 +248,23 @@ ScoreDistribEmpiric <- function(lambda0, lambda1, n_sample, T){
 | 
				
			|||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```{r}
 | 
					```{r}
 | 
				
			||||||
ScoreDistribElisa <- function(lambda0, lambda1, NbSeq, T){
 | 
					ScoreDistribElisa <- function(lambda0, lambda1, T){
 | 
				
			||||||
    E = ComputeE(lambda0, lambda1)
 | 
					    E = ComputeE(lambda0, lambda1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    score_max=floor(E*log(lambda1/lambda0))
 | 
					    score_max = floor(E*log(lambda1/lambda0))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ## score_min compute
 | 
					    ## score_min compute
 | 
				
			||||||
    score_min_c=floor(E*log(lambda1/lambda0)+E*(lambda0-lambda1)*T)
 | 
					    score_min_c = floor(E*log(lambda1/lambda0)+E*(lambda0-lambda1)*T)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    l=seq(score_min_c,score_max,1)
 | 
					    l = seq(score_min_c,score_max,1)
 | 
				
			||||||
    borne_inf=(l-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
					    borne_inf = (l-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
				
			||||||
    borne_sup=(l+1-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
					    borne_sup = (l+1-E*log(lambda1/lambda0))/(E*(lambda0-lambda1))
 | 
				
			||||||
    proba.l=pexp(rate=lambda0,borne_inf)-pexp(rate=lambda0,borne_sup)
 | 
					    proba.l = pexp(rate=lambda0,borne_inf)-pexp(rate=lambda0,borne_sup)
 | 
				
			||||||
    S=sum(proba.l)
 | 
					    S = sum(proba.l)
 | 
				
			||||||
    new.proba.s=proba.l/S
 | 
					    new.proba.s = proba.l/S
 | 
				
			||||||
 | 
					    df = data.frame("Score_X" = l, "P_X" = new.proba.s)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return (list("X" = l, "P_X" = new.proba.s))
 | 
					    return (df)
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -319,8 +320,8 @@ for (lambda0 in (2:5)){
 | 
				
			|||||||
            print(summary(LS_H0))
 | 
					            print(summary(LS_H0))
 | 
				
			||||||
            cat("-\n")
 | 
					            cat("-\n")
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            Score = ScoreDistribElisa(lambda0, lambda1, NbSeq, T)
 | 
					            Score = ScoreDistribElisa(lambda0, lambda1, T)
 | 
				
			||||||
            X_seq = Score$X
 | 
					            X_seq = Score$Score_X
 | 
				
			||||||
            P_X = Score$P_X
 | 
					            P_X = Score$P_X
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            LS_H0 = LocaScoreMC(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0)
 | 
					            LS_H0 = LocaScoreMC(lambda0, lambda1, NbSeq, T, X_seq, P_X, tbe0)
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user